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The knowledge about discrete quantum breathers, accumulated during the last two decades, is
reviewed. “Prehistory” of the problem is described and some important properties differentiating
localized and extended vibrational modes are outlined. The state of art of our understanding of the
principal features of the quantum discrete breathers is presente2D0® American Institute of
Physics. [DOI: 10.1063/1.15411591

The idea of a localization of vibrational energy due to be equally distributed among numerous bonds available in
anharmonic effects was put forward independently sev- molecules was discussed as early as in the 196@= also
eral times, in different fields, under different names, aim-  Refs. 2 and B The attention at that time was largely concen-
ing at different applications. One of the most popular trated on studies of radiationless transitions between elec-
names for such a localized state during the last decade is tronically excited and ground states of the molecules. The
breather. Quantization of such localized excitations has fact that such a transition proceeds via a single anharmonic
been also under study for quite a long time. This paper bond rather than over many weakly excited, and hence
reviews the field with a special emphasis on the results nearly harmonic bonds, can make a principal difference. For
related to the quantum breathers. Among the problems  example, the Franck—Condon factor, which is in fact the
touched upon are quantization of breathers, separation overlap of the vibrational wave functions in two different
between the quantum breathers, corresponding to classi- electronic states and which controls the transition rate of the
cally localized states, and phonons—extended states, dy- radiationless transitions, can, in principle, be calculated us-
namical properties of breathers. The amount of the re-  ing a harmonic approximation. However, the neglect of an-
sults related to quantum breathers is not large and the  harmonicity for highly excited vibrational states may under-
best has been done to make a possibly complete coverage estimate the transition rate by many orders of magnitude as
of the field. demonstrated in Ref. 4, where the Franck—Condon factor
was calculated for Morse oscillators.

Even if we go back to the mid-1960s and 1970s when
the principal attention was concentrated on localization of

The idea of a possible localization of vibrational energyvibrational energy on single molecular bonds, we realize that
in a single highly excited local mode of an anharmonic dis-the story has actually begun much earlier. The idea that in-
crete system was first discussed in chemical physics. Thigared absorption is localized in certain parts of molecules
research in solid state was mainly concentrated on studyingas clearly recognized at least as early as T9Q@8iantum
extended low energy vibrational excitations—phononsMorse oscillator was used to analyze some peculiar features
which played an important part in shaping thermodynamicof the infrared absorption in molecules in 1928.became
and kinetic properties of crystals. Anharmonicity was consid—lear by that time that, for instance, the vibration energy in
ered mainly as an additional weak factor in an otherwisearomatic molecules, containing benzene rings is typically lo-
harmonic crystal. It usually yielded small corrections tocalized on one of the six stretching CH oscillators rather than
physical quantities, which were mainly determined by thegjstributed over the ring. In the early 1930s Meciteal.”°
harmonic part of the vibration energy. Two exclusions aremore references to the works of this group can be found in
well  known—thermal expansion and phonon thermalref. 10, see also Ref. Ltarted publishing a series of pa-
resistivity—when a nonzero result appears only due to theers on the subject. These important early achievements es-
anharmonicity. However, even in these cases it was possib ped, however, the attention of the people researching this
to consider only the lowest order perturbation terms. field beginning from the 1960s.

The situation in chemistry has been different from the Returning to the 1960s and 1970s, we mention an exten-
very beginning, since the typical processes such as chemicgje discussion of the properties of the so-called “accepting”
reactions, radiation and radiationless electronic transitiong,q “promoting” modes(see, e.g., Ref. 32This discussion
are necessarily accompanied by a release or absorption ofi@;, fact still ongoing. We may just pick up one of the most
rather high energy, when anharmonic properties of moleculafecent papefd considering the role of the promoting modes
vibrations may fully reveal themselves. A tendency of thejy yagjationless transitions. The main idea is that the transfer
vibrational energy to localize on a single bond rather than tQy gjectronic energy of an excited molecule into vibrational
excitations proceeds not via all available vibrational modes,
dElectronic mail fleurov@post.tau.ac.il but rather only a limited humber of the modes take part in
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the process. There are only a fépossibly ong promoting  discussed the long wave limit where the originally discrete
modes, which are responsible for the transition between thproblem could be reduced to a continuous problem, e.g., to a
excited and the ground electronic states of the moleculesine-Gordon equation. Localized excitations for anharmonic
There is also a limited number of accepting modes, whictcrystals were introduced in Refs. 27 and 28. Reference 29
accept the rather high electronic energy released in theeviews numerous aspects of the problem of classical breath-
course of the transition. This approach is sound if such higlers and discusses various techniques of their calculations.
excitations are stable enough and can exist during a suffi- Different authors call these types of excitation by differ-
ciently long time without decaying into low energy extendedent names: local modes, localized solitons, doorway states,
normal vibrations. intrinsic local modes, and, finally, discrete breathers. The lat-

The role of anharmonic effects in molecular crystals wager name is most popular in the nonlinear dynamics commu-
studied by Kranendok*'°and later by Agranoviclisee Ref.  nity and it will be used below.

16 and references therg¢iwhose attention was concentrated
on coupled states of two phonons—biphonons. We shall S&2 L OCAL AND EXTENDED MODES

below that such states are just the simplest possible quantum

breathers. An analogy of such biphonon states with two- A detailed analysis of the structure of the phase space
magnon statéé°was also emphasized in Ref. 16. allowing for a separation between local and nornfex-

A very interesting experimental indication favoring the tended modes and transitions between behaviors typical of
existence of relatively stable highly excited vibrational stateseach type of mode was carried out by Jaffe and Bruther.
was reviewed in Ref. 20. Dissociations of various moleculesThey addressed the problem by restricting themselves to two
were induced by irradiation of powerful infrared lasers. Dis-bound anharmonic oscillators. This problem was also dis-
sociation happens locally, only one or just a few bondscussed in Ref. 31 where systems with a larger number of
should be broken. About 30 infrared quanta are necessary wscillators were discussed as well. The approaches to both
excite a bond high enough to break it. It is a direct indicationthe local and normal modes are approximate schemes repre-
that such highly excited vibrational states of the bond livesenting the Hamiltonian of the system as
sufficiently long in order to have enough time to accumulate
the necessary number of photons. H=Hy+V, HO—E H! 0o(d;j.p;),

The idea of a localization of anharmonic excitations was
promoted by Ovchinnikov in 1969 (see also Ref. 22Two  where each ternhi! 6(a;.p;) depends only on thgth pair of
coupled anharmonic oscillators were considered and it wageneralized coordinates, and the coupling between them is
shown that the energy of a highly excited oscillator wouldaccounted for by the teri. If we choose the normal mode
not flow to the other one, so that the excitation energy reapproach, these generalized coordinates are normal coordi-
mained localized on one of these two oscillators. It was als®ates, which can be most easily obtained in the small ampli-
assumed that this property would hold for more complextude limit. These are symmetry coordinates and they can be
systems consisting of many coupled oscillators. It was outelassified by means of the irreducible representations of the
lined (although not provenin Ref. 22 that these local anhar- whole system. The local mode approach chooses displace-
monic oscillations in complex systems may be linearly stablement of an individual bond from equilibrium as the coor-
and even the possible role of the Arnold diffusion was indi-dinateq; . Then the bond anharmonicity is directly included
cated. into the H), term.

More recently it was emphasized that localized anhar- The ch0|ce between the approaches depends on the type
monic excitations in molecules could play a role of doorwayof the problem addressed and the quality of the resulting
stategsee Ref. 2B The standard theories based on the Fermieroth order approximatiofneglectingV). We are always
golden rule assumed that the density of vibrational states imterested in having possibly small corrections due to the
the molecule was the essential parameter determining theouplingV. It is worth emphasizing that the treatment of the
relaxation times of various excited states. However, the extocal modes in Ref. 30 is very close to the anticontinuum
periment clearly demonstrated that there was no direct cofimit used by MacKay and Aubri in order to give a math-
relation between the densities of states in various moleculesmatical proof of the classical discrete breather existence
and the relaxation times measured in these molecules. Fdsee also Ref. 33
example, an increase of the density of states by three orders An insight to localized modes is provided by turning to
of magnitude may be accompanied by a decrease of the lifdghe angle—action variablelgp; ,1;} with j enumerating the
time of some states by a factor of 2. That is where the idea dbonds. In the absence &f the phase space motion is re-

a doorway state enters. Actually the major part of the statestricted by certain tori determined by the conserving Hamil-
contributing to the observed density of states have only @onianH=2;H;(l;). Then according to Ref. 30 we define
minor relevance to the relaxation procé$sn fact this pro-  the amplltude dependent frequencies=dH;(1;)/dl;. The
cess proceeds via only one or maybe few highly excited lobehavior typical of a local mode shows up when the ampli-
calized states, which largely determine the relaxation ratetudes of the different bonds differ strongly from each other,
The connection between the doorway states and discretnd hence the corresponding frequencies differ as well.
guantum breathers was discussed in Ref. 25. If the amplitudes, and hence the frequencies of different

A possibility of a localization of vibrational excitation in bonds coincidgsay, w,= w,) the 1:1 resonance takes place
an anharmonic chain was analyzed in Ref. 26. This papeand a small perturbation yields a normal mode behavior. A

Downloaded 27 Dec 2005 to 132.66.128.203. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



678 Chaos, Vol. 13, No. 2, 2003 V. Fleurov

commensurate ratio; w;=n,w,, with integern; may also  breather states cannot be distinguished from the quantized
lead to a resonance. This resonance is similar to the wellRormal (phonon states, which also satisfy Bloch theorem
known Fermi resonance between quantum oscillators. Thél), or, at least, they cannot be distinguished along the guide-
discussion in Ref. 30 is limited largely to a dimer, i.e., two lines, used in classical mechanisge discussion in Sec,) .l
coupled anharmonic oscillators. In this case one can easily Let us try to construct a quantum breather wave function
imagine 1:1 resonances at various excitation levels of thén the form
bonds. However, if we consider a system of many or even
infinite number of bonds, then such a 1:1 resonance would 1 o
require an equal and finite excitation of all the bonds. This Wio({rj}) = _NZ CE SRR @)
would correspond to a large or even infinite accumulated .
excitation energy. Such a situation does not seem to be gevhereN is the number of sites in the lattice. Obviously this
neric and achievable in real physical systems. The exclusiofunction satisfies the Bloch theoreft) although it is con-
is the case of smalinfinitesimally small excitations of the  structed using only the site functions with a fixed valuexof
bonds, i.e., excitation of various phonon modes. This type offhis construction can be viewed as a tight binding approxi-
excitations will be usually implied below, when considering mation, often used when describing electron motion in a nar-
extended normal excitations. row band. The local function®;, ,({r;}), if orthogonal-
One of the important conclusions of Ref. 30 is that theized, may play the role of the Wannier functions. In the
tori related to the local and to the normal mode types ofanticontinuum limit they are just wave functions of the single
motion cannot be deformed into each other by any continupond excitations and remain rather close to them as long as
ous variations of the Hamiltonian. These two types of tori arehe coupling parameter remains small enough.
situated in different parts of the phase space. Varying the A single phonon excitation, which in the classical me-
coupling or other parameters of the Hamiltonian changes thehanics is associated with a normal extended vibration, is
shape of the separatrix between these two parts but nevebtained by quantizing the normal coordinates. Nownan
mix them. The corresponding bifurcation point was studiedphonon function should be considered. A multiphonon state
later by Scottet al** is a symmetrized product of, single phonon wave functions

lIl. QUANTUM BREATHER ‘l’k,n({fj})=|/°\sl:[1 e ({rih), ()

Let us try to understand what are the properties of the -
wave function of a quantum breather, which would allow uswherePg denotes the symmetrization of the product of func-
to distinguish it from the normal state€The discussion in tions. The structure of the multiphonon wave functi(®)
this section is based largely on Refs. 25 and 88classical ~ certainly differs from that of the quantum breather wave
mechanics we separate between norifionon modes,  function (2). In principle, the corresponding wave function
which reflect the symmetry of the system and are extendedan be also represented in the form similar(2p. But the
over the whole system, and the local modéseathers corresponding Wannier functions will strongly differ from
when only a small number of neighboring sites are involvedhe single bond excitations.
in the motion. This crystal-clear distinction becomes blurred ~ We can invert the question. Let us assume that we are
when we turn to quantum mechanics. given a functiorn¥ ({r;}), which observes the Bloch condi-
Let us assume that we have a classical breather solutidiion (1), and we are asked to determine whether the given
with the corresponding phase-space trajectory lying on dunction represents a quantized breather or just a symme-
torus. We can obtain such a solution by exciting a motion oftrized product(or combination of such produgtf single
the jth site of the lattice in the anticontinuum linfitvithout ~ phonon excitations. In both cases the function is extended
intersite interactionand then gradually switching the inter- and may be classified according to the irreducible represen-
site interaction on. This motion can be now quantized, resulttations of the crystal group. It means that the approach used
ing in a set of wave functions¥; ,({r;}) with « being the in Ref. 30 within the framework of the classical mechanics
quantum number. This step is not necessarily easy, and cadoes not help.
not always be done analytically even approximately. How-  On the other hand, the difference between the two states,
ever, there are cases when it is possible, at least numericalle quantum breath&2) and then phonon staté€3), is physi-
Now we have to recollect that an eigenfunction of acally quite clear. A quantum breather forms as a result of a
periodic Hamiltonian must satisfy the Bloch theorem, whichcoherent tunneling of a high excitation of a bond, whereas
states that normal multiphonon states correspond to independent mo-
- tion of n low energy excitations extended over the whole
\P({rﬁa}):elka\y({ri})' @ crystal. Rather loosely we may say that in the quantum
Herea is the lattice period, antl is the wave vector. These breather case all the “phonons,” or better to say bosons, are
functions are certainly extended, reflect the symmetry of thalways coupled together on a bond. As for the multiphonon
system and their classification can be carried out using thetate the phonons are not coupled, move independently and
irreducible representations of the symmetry group of the sysactually never meet each other. The probability thande-
tem. But in the classical mechanics all these were just fegpendent phonons meet simultaneously on one ofNtt®nds
tures typical of the normal modes, meaning that quantizedf the lattice can be estimated WS ".
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We may now try to formalize this intuitive understand- the second one was in its ground state 0. Then the ex-
ing. It is rather easy to do for such models as discrete nonehange of this excitation between the two oscillators was
linear Schrdinger equatiofDNLS) with the Hamiltonian estimated by perturbation theory. A better estimate for the

breather tunneling transition was presented in Ref. 34 for an

H=w,>, ‘i’?‘i’ﬁ ZE ‘i’?‘i’?‘i’i‘i’i integrable dimer was considered. The DNLS Hamiltor{i@&in
[ 25 with only two sites was considered, for which the tunneling
probability is
FC2 [yt W), (4) onc [Cin-1
wation (-1 (? "
where the operator of the total number of boson excitation

R o A more general equation when a tunneling exchange be-
B=2 V¥, tween two not equally excited bonds of the dimer take place,
' can be found in Ref. 35. This tunneling probability is small,
commutes with the Hamiltonian and the correspondingmoreover, it decreases rapidly with the growth of the excita-
physical quantity conserves. Now the procedure, to be caition numbern.
ried out with the given wave function, is to measure the  Now a question may be asked: Is there any difference
probability of havingn phonons in a site. The operator for between the tunneling transfer of a vibrational excitation be-

such a probability can be defined as tween the two bonds of a dimer and a similar tunneling in a
lattice with macroscopically large number of sites? A differ-

B(n):E i{l,_‘rnq,_n_ (5) ence may appear since the tunneling object interacts with

LU extended normal oscillations—phonons, and the tunneling

probability can be strongly renormalized by this interaction.
. The influence of interaction of a tunneling particle with ex-
operator for the quantum breather functi) one gets ex-  yonqeqd excitations on its tunneling has been studied in many

actly 1 in the anticontinuum limit, and a finite quantity, getails; see, e.g., Ref. 36. One of the most interesting phe-
smaller than 1, for a finite coupling. The expectation value of,

' g - =2k nomena predicted in these studies is a possibility of a tun-
this operator for the multiphonon functi@B) is of the order neling suppressiof’f, which may take place in the so-called

of N*"" and tends to zero in the thermodynamic limN (' 5pmic case, when the density of the extended excitations is
—) for any n=2. This procedure can be also applied t0inagr.

other Hamiltonians, for which the number of boson excita-  Thjg syppression is due to the behavior of the interaction

tions does not necessarily conserve. The most importanf the tunneling particle with the continuum of extended

property of a wave function, indicating that it represents agates which in the Ohmic case becomes divergent in the
quantum breather state, is that the corresponding expectatiof,rared” limit. The question whether the same divergence

value of the operatd(5) remains finite in the thermodynamic 4y happen in the case of breather tunneling is addressed in

limit. Ref. 38. The analysis carried out in this paper demonstrates
The quantum breather stateB;, ,(irj}), form aband, ¢ there is an important difference between the phase-space

which may be called the breather band, generated from thg,nejing of a localized vibrational excitation and the real

ath quantum state of an individual bond. In the weak cou-gnace tunneling of a particle. The local vibrational excitation

pling limit the band spectrum in the one-dimensional case iS5 -haracterized by its own internal frequengy, which in-

Calculating the expectation valuéB™), cames Of this

E,(K)=to,+ 2(tg,S,+1t1,)COSKA, (6)  terfere with the continuum of the extended excitations and
leaves no room for the above “infrared” divergence.
where to,=(Vj o|H|Vj o), Sa=(¥j ol Vjr1a) and ty, Then an adiabatic approximation can be applied, assum-
= (V) ol H|Vjs14) ing the internal motion to be more rapid than the motion

The most importgnt parameter heret{s which.gives associated with the “infrared part” of the spectrum of the
the probability amplitude of a tunneling translation of a exiended normal vibrations. The final conclusion of Ref. 38

quantized local vibrational excitation by one lattice spacingis that the tunneling probability; can be obtained frorti)
The problem of its calculation was addressed in several conyst py introducing a “renormalized” excitation number

texts. It seems that it is sufficient to consider two adjacent
anharmonic bond& dimep, where in the classical case tra- _
jectories appear, which are not invariant under permutation =N
of the bonds, meaning that one bond may be strongly excited
whereas the other bond remains at a much lower degree @istead ofn, whereC,, is the coupling of the local excitation
excitation. Quantum mechanics would allow a tunnelingwith extended excitations, characterized by the frequencies
transition when the excitation energy is transferred from onev,, .
bond to another. An illuminating discussion of quantum breathers on a
An estimate for such tunneling probability was given in periodic one-dimensional lattice was carried out in Refs. 39
Ref. 22 for a transition between two Morse oscillatorsand 40(see also Refs. 11 and Jising the example of the
coupled by a bilinear interaction. An assumption was madeuantum DNLS. This model conserves the total number of
that one oscillator is excited at a high quantum statehile  bosons, so that using number state representation the quan-

C2
14+ r )

O-w,
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tum problem is reduced to diagonalization of finite size ma-
trices, when considering a system with a finite number of
sitesN, and a finite number of bosoms

In particular, the band energy was calculated in two in-
teresting cases. The band energy of a two boson breather
state in DNLS lattice foN— 2 and an arbitrary value of the
anharmonicity versus coupling ratig/C, is

E,(k)=—\y?+16C? cog(ka/2),

which converges to the forrt6) in the limit of smallC. The T
spectrum is also found in the limit of large anharmonicjty
and for an arbitranyn,

Energy

1 2nC" !
En(k): En(n—l) Y Wcoska. (8) COllpliIlg

The first term in(8) is the energy of an individual bond with FIG. 1. This figure illustrates broadening and crossings of breather bands
n bosons. whereas the second term can be up to a numerir%éﬂh increasing coupling parameter. Pairs of lines show boundaries of the
L. . ' reather bands, which change their energy, broaden and may cross each
factor, obtained using Eq$6) for the breather band energy i er with the increase of the coupling.
and (7) for the tunneling amplitude in the NLS dimer.
A detailed discussion of two coupled phonons in mo-

lecular crystals, biphonons, was carried out in Ref. 16. It iSllustrated in Fig. 1. Certainly the crossing should be made
quite clear that two coupled phonons make just the minimahvoided when the symmetry requires it. Such crossings are
condition for a quantum breather. Several quantum breathefsually associated with the so-called chaos assisted
bands were also obtained numerically in Ref. 42. Referenceginneling*’
43 and 44 consider a model, where the nonlinearity appear This picture reflects our optimistic expectations that a
due to a strong coupling of Einstein modes with electronspreather band survives quite a few crossings without losing
and analyze some properties of theéboson bands. The re- its specific features. A support for our belief that this picture
sults were successfully applied to the interpretation of theeally holds, comes from studié3*® These papers consider
Raman scattering data in mixed valence transition metah trimer as a system mimicking the behavior of a larger sys-
complexes? tem. Tunneling pairs represent then the breather bands. The
Many of the above considerations reflect our expectaanalysis carried out in these papers demonstrates that varying
tions of the quantum breather behavior and are based on sughe parameters of the system leads to multiple crossings of
general ideas as quantum levels and bands, Bloch theorefhese tunneling pairs. However, the pairs appear to be rather
phase space tunneling and so on. They are also confirmed Bybust creatures, capable of surviving many crossings with-
findings in papers referred to above. It is obvious that thisout losing their quantum breather identities. Certainly similar
approach works well in the anticontinuous limi€€0)  analysis for a really large system is necessary, but it requires

when the onsite oscillators can be considered as independeatrapidly increasingwith the growing number of the systems
Then an excited state of an individual oscillator does nokijteg computer time and is still to be done.

decay and the probability of tunneling of such an excitation
to another site is zero. The Bloch type constructi@n is
formally an eigenfunction of the whole Hamiltonian. The
question addressed by MacKyvas, does a small but finite
couplingC introduce also a finite perturbation to this pattern, The picture of quantized breathers as described in the
so that this perturbation does not depend on the nuiRbar  previous section is similar to that of quasiparticles moving in
the lattice sites and, hence, does not diverge WthThe a band. Due to very small tunneling probability, which de-
answer is positive and a proof is presented in the fipest  creases exponentially for higher excitation levels, the width
there is a certain, small but finite, range of the coupling paof this band is extremely small, or, in the other words, the
rameter values where the above quantum breather propertieffective mass of the quasiparticle is very large. Thinking
hold. about dynamics of such an excitation, at least two aspects of
The question, what limits this range from above, remainst may be discussed.

open from the rigorous mathematical point of view. However  First, a large tunneling time implies that the excitation
some physical arguments can be presented here. Whestays predominantly at the same site of the lattice. An inter-
gradually switching the coupling on, the breather band beaction of such a quantum state with available extended exci-
comes broader and its “center of mass” shifts either upwardations may cause its decay. This issue is discussed in Refs.
or downward. This broadening, when comparable with the50 and 51. Highly excited local anharmonic excitations are
energy gap between the different breather bands, will cerassumed to exist and to be linearly stable. Then a second
tainly destroy the breather character of these bands. Howerder coupling of the breather and phonon coordinates is, in
ever, the event, which most probably happens earlier, iprinciple, allowed(two phonon processgsvarious regimes
crossing of a pair of still narrow breather bands. This isof the breather relaxation are considered with the conclusion

IV. DYNAMICS OF A LOCALIZED QUANTUM
EXCITATION
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that the relaxation may proceed not necessarily exponentiallgoupled Bose—Einstein condensdtesyhich are well de-
but rather with a possible emission of phonon bursts. scribed by the DNLS or Bose—Hubbard model.

Second, if the decay time of a quantum breather appears We may now compare the flourishing field of classical
to be long enough, then the breather can be thought about dgscrete breathers, where dozens of papers are being pub-
a heavy particle moving or, better to say, diffusing in a nar-lished every year, studying many subtle details of breathers,
row band. Various aspects of quantum diffusion of ordinarytheir dynamics, their interactions with other breathers or with
heavy particles, say, hydrogen interstitial atoms in crystal®xtended excitations, with the scarce information and a small
were studiedsee Ref. 52 and references therein, a descripamount of papers on the quantum discrete breathers accumu-
tion of the principle features of the quantum diffusion is alsolated during, say, last decade. One may ask a question: Why
presented in Ref. 53The principal aim of these studies was is it so? Why does the field of quantum breathers not attract
to understand the low temperature behavior of the diffusioomuch more attention? | present here my opinion, which may
coefficient. The most important factor determining the diffu-be at least part of the answer. In many cases a study of a
sion is the interaction of the heavy particle with the phononscertain breather related phenomeriolassical is carried out
At any reasonable temperature the typical phonon energin the following fashion. One chooses a model system, con-
may be larger than the band width. Therefore a single photaining a certain amount of sites, large enough to be a good
non may easily destroy the resonance between two neighboapproximation for “infinite,” runs a computer simulation for
ing sites and hinder tunneling. Then the diffusion coefficienta time, which is long enough to be considered “infinite,” and
will decrease with the temperature. On the other hand, tw@ets some results. This procedure plays a role similar to that
(or many phonon processes may help the tunneling processf an experiment, which measures properties of the breather.
and stimulate it, which results in a growth of the diffusion Then one can try to apply various analytical methods in or-
coefficient with the temperature. These two competingder to get an understanding of the observations, i.e., to make
mechanisms may lead to a nonmonotonic low temperatura theory.
dependence of the diffusion coefficient. Besides these pho- This type of work became possible in the 1990s when
non mechanisms governing the quantum diffusion of heavyvorkstations started being easily accessible. Try now to
particles, one should also take into account that defectdmagine the same approach to a quantum breather. Classical
which inevitably appear in any real lattice, create stress fieldbreather requires a consideration of an isolated orbit in the
around themselves and can relatively easy block the tunnephase space of the system. Quantum breather requires a con-
ing by breaking the resonances between the bonds. sideration of a wave function or, say, of a Wigner distribu-

All this being said about the quantum diffusion of a tion. It is quite clear that the amount of information to be
heavy particle and in spite of the obvious analogy betweerrunched by the computer may be many orders of magnitude
the quantum breathers and heavy particles, one should Berger in the quantum case. This makes a real computer ex-
cautious when transferring the knowledge available forperiment on the scale similar to that regularly done for clas-
heavy particles into the field of quantum breathers. An exsical breathers, hardly possible, if the limitations of the cur-
ample of possible differences was indicated in our pEper rently available computers are taken into account, and
where the absence of tunneling suppression for quanturstrongly cripples our efforts to study quantum breathers.
breathers was demonstrated. It still remains a topic for th&hall we wait for the advent of new much more powerful
future to study quantum diffusion of quantum breathers. computers, or maybe some new bright ideas will clear the

way? We will see in the future.
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