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Discrete quantum breathers: What do we know about them?
V. Fleurova)
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The knowledge about discrete quantum breathers, accumulated during the last two decades, is
reviewed. ‘‘Prehistory’’ of the problem is described and some important properties differentiating
localized and extended vibrational modes are outlined. The state of art of our understanding of the
principal features of the quantum discrete breathers is presented. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1541151#
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The idea of a localization of vibrational energy due to
anharmonic effects was put forward independently sev-
eral times, in different fields, under different names, aim-
ing at different applications. One of the most popular
names for such a localized state during the last decade i
breather. Quantization of such localized excitations has
been also under study for quite a long time. This paper
reviews the field with a special emphasis on the results
related to the quantum breathers. Among the problems
touched upon are quantization of breathers, separation
between the quantum breathers, corresponding to classi
cally localized states, and phonons—extended states, d
namical properties of breathers. The amount of the re-
sults related to quantum breathers is not large and the
best has been done to make a possibly complete covera
of the field.

I. INTRODUCTION

The idea of a possible localization of vibrational ener
in a single highly excited local mode of an anharmonic d
crete system was first discussed in chemical physics.
research in solid state was mainly concentrated on stud
extended low energy vibrational excitations—phono
which played an important part in shaping thermodynam
and kinetic properties of crystals. Anharmonicity was cons
ered mainly as an additional weak factor in an otherw
harmonic crystal. It usually yielded small corrections
physical quantities, which were mainly determined by t
harmonic part of the vibration energy. Two exclusions a
well known—thermal expansion and phonon therm
resistivity—when a nonzero result appears only due to
anharmonicity. However, even in these cases it was poss
to consider only the lowest order perturbation terms.

The situation in chemistry has been different from t
very beginning, since the typical processes such as chem
reactions, radiation and radiationless electronic transiti
are necessarily accompanied by a release or absorption
rather high energy, when anharmonic properties of molec
vibrations may fully reveal themselves. A tendency of t
vibrational energy to localize on a single bond rather than
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be equally distributed among numerous bonds available
molecules was discussed as early as in the 1960s1 ~see also
Refs. 2 and 3!. The attention at that time was largely conce
trated on studies of radiationless transitions between e
tronically excited and ground states of the molecules. T
fact that such a transition proceeds via a single anharm
bond rather than over many weakly excited, and he
nearly harmonic bonds, can make a principal difference.
example, the Franck–Condon factor, which is in fact t
overlap of the vibrational wave functions in two differe
electronic states and which controls the transition rate of
radiationless transitions, can, in principle, be calculated
ing a harmonic approximation. However, the neglect of a
harmonicity for highly excited vibrational states may unde
estimate the transition rate by many orders of magnitude
demonstrated in Ref. 4, where the Franck–Condon fa
was calculated for Morse oscillators.

Even if we go back to the mid-1960s and 1970s wh
the principal attention was concentrated on localization
vibrational energy on single molecular bonds, we realize t
the story has actually begun much earlier. The idea that
frared absorption is localized in certain parts of molecu
was clearly recognized at least as early as 1908.5 Quantum
Morse oscillator was used to analyze some peculiar feat
of the infrared absorption in molecules in 1929.6 It became
clear by that time that, for instance, the vibration energy
aromatic molecules, containing benzene rings is typically
calized on one of the six stretching CH oscillators rather th
distributed over the ring. In the early 1930s Meckeet al.7–9

~more references to the works of this group can be found
Ref. 10, see also Ref. 11! started publishing a series of pa
pers on the subject. These important early achievements
caped, however, the attention of the people researching
field beginning from the 1960s.

Returning to the 1960s and 1970s, we mention an ex
sive discussion of the properties of the so-called ‘‘acceptin
and ‘‘promoting’’ modes~see, e.g., Ref. 12!. This discussion
is in fact still ongoing. We may just pick up one of the mo
recent papers13 considering the role of the promoting mode
in radiationless transitions. The main idea is that the tran
of electronic energy of an excited molecule into vibration
excitations proceeds not via all available vibrational mod
but rather only a limited number of the modes take part
© 2003 American Institute of Physics
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the process. There are only a few~possibly one! promoting
modes, which are responsible for the transition between
excited and the ground electronic states of the molec
There is also a limited number of accepting modes, wh
accept the rather high electronic energy released in
course of the transition. This approach is sound if such h
excitations are stable enough and can exist during a s
ciently long time without decaying into low energy extend
normal vibrations.

The role of anharmonic effects in molecular crystals w
studied by Kranendok,14,15and later by Agranovich~see Ref.
16 and references therein! whose attention was concentrate
on coupled states of two phonons—biphonons. We shall
below that such states are just the simplest possible quan
breathers. An analogy of such biphonon states with tw
magnon states17–19 was also emphasized in Ref. 16.

A very interesting experimental indication favoring th
existence of relatively stable highly excited vibrational sta
was reviewed in Ref. 20. Dissociations of various molecu
were induced by irradiation of powerful infrared lasers. D
sociation happens locally, only one or just a few bon
should be broken. About 30 infrared quanta are necessa
excite a bond high enough to break it. It is a direct indicat
that such highly excited vibrational states of the bond l
sufficiently long in order to have enough time to accumul
the necessary number of photons.

The idea of a localization of anharmonic excitations w
promoted by Ovchinnikov in 196921 ~see also Ref. 22!. Two
coupled anharmonic oscillators were considered and it
shown that the energy of a highly excited oscillator wou
not flow to the other one, so that the excitation energy
mained localized on one of these two oscillators. It was a
assumed that this property would hold for more comp
systems consisting of many coupled oscillators. It was o
lined ~although not proven! in Ref. 22 that these local anha
monic oscillations in complex systems may be linearly sta
and even the possible role of the Arnold diffusion was in
cated.

More recently it was emphasized that localized anh
monic excitations in molecules could play a role of doorw
states~see Ref. 23!. The standard theories based on the Fe
golden rule assumed that the density of vibrational state
the molecule was the essential parameter determining
relaxation times of various excited states. However, the
periment clearly demonstrated that there was no direct
relation between the densities of states in various molec
and the relaxation times measured in these molecules.
example, an increase of the density of states by three or
of magnitude may be accompanied by a decrease of the
time of some states by a factor of 2. That is where the ide
a doorway state enters. Actually the major part of the sta
contributing to the observed density of states have onl
minor relevance to the relaxation process.24 In fact this pro-
cess proceeds via only one or maybe few highly excited
calized states, which largely determine the relaxation r
The connection between the doorway states and disc
quantum breathers was discussed in Ref. 25.

A possibility of a localization of vibrational excitation in
an anharmonic chain was analyzed in Ref. 26. This pa
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discussed the long wave limit where the originally discre
problem could be reduced to a continuous problem, e.g.,
sine-Gordon equation. Localized excitations for anharmo
crystals were introduced in Refs. 27 and 28. Reference
reviews numerous aspects of the problem of classical bre
ers and discusses various techniques of their calculation

Different authors call these types of excitation by diffe
ent names: local modes, localized solitons, doorway sta
intrinsic local modes, and, finally, discrete breathers. The
ter name is most popular in the nonlinear dynamics comm
nity and it will be used below.

II. LOCAL AND EXTENDED MODES

A detailed analysis of the structure of the phase sp
allowing for a separation between local and normal~ex-
tended! modes and transitions between behaviors typica
each type of mode was carried out by Jaffe and Brume30

They addressed the problem by restricting themselves to
bound anharmonic oscillators. This problem was also d
cussed in Ref. 31 where systems with a larger numbe
oscillators were discussed as well. The approaches to
the local and normal modes are approximate schemes re
senting the Hamiltonian of the system as

H5H01V, H05(
j

H0
j ~qj ,pj !,

where each termH0
j (qj ,pj ) depends only on thej th pair of

generalized coordinates, and the coupling between them
accounted for by the termV. If we choose the normal mod
approach, these generalized coordinates are normal co
nates, which can be most easily obtained in the small am
tude limit. These are symmetry coordinates and they can
classified by means of the irreducible representations of
whole system. The local mode approach chooses displ
ment of an individual bondj from equilibrium as the coor-
dinateqj . Then the bond anharmonicity is directly include
into theH0

j term.
The choice between the approaches depends on the

of the problem addressed and the quality of the result
zeroth order approximation~neglectingV). We are always
interested in having possibly small corrections due to
couplingV. It is worth emphasizing that the treatment of th
local modes in Ref. 30 is very close to the anticontinuu
limit used by MacKay and Aubry32 in order to give a math-
ematical proof of the classical discrete breather existe
~see also Ref. 33!.

An insight to localized modes is provided by turning
the angle—action variables$w j ,I j% with j enumerating the
bonds. In the absence ofV the phase space motion is re
stricted by certain tori determined by the conserving Ham
tonian H5( jH j (I j ). Then according to Ref. 30 we defin
the amplitude dependent frequenciesv j5]H j (I j )/]I j . The
behavior typical of a local mode shows up when the am
tudes of the different bonds differ strongly from each oth
and hence the corresponding frequencies differ as well.

If the amplitudes, and hence the frequencies of differ
bonds coincide~say,v15v2) the 1:1 resonance takes plac
and a small perturbation yields a normal mode behavior
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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commensurate ration1v15n2v2 , with integernj may also
lead to a resonance. This resonance is similar to the w
known Fermi resonance between quantum oscillators.
discussion in Ref. 30 is limited largely to a dimer, i.e., tw
coupled anharmonic oscillators. In this case one can ea
imagine 1:1 resonances at various excitation levels of
bonds. However, if we consider a system of many or e
infinite number of bonds, then such a 1:1 resonance wo
require an equal and finite excitation of all the bonds. T
would correspond to a large or even infinite accumula
excitation energy. Such a situation does not seem to be
neric and achievable in real physical systems. The exclu
is the case of small~infinitesimally small! excitations of the
bonds, i.e., excitation of various phonon modes. This type
excitations will be usually implied below, when considerin
extended normal excitations.

One of the important conclusions of Ref. 30 is that t
tori related to the local and to the normal mode types
motion cannot be deformed into each other by any conti
ous variations of the Hamiltonian. These two types of tori
situated in different parts of the phase space. Varying
coupling or other parameters of the Hamiltonian changes
shape of the separatrix between these two parts but n
mix them. The corresponding bifurcation point was stud
later by Scottet al.31

III. QUANTUM BREATHER

Let us try to understand what are the properties of
wave function of a quantum breather, which would allow
to distinguish it from the normal states.~The discussion in
this section is based largely on Refs. 25 and 33.! In classical
mechanics we separate between normal~phonon! modes,
which reflect the symmetry of the system and are exten
over the whole system, and the local modes~breathers!,
when only a small number of neighboring sites are involv
in the motion. This crystal-clear distinction becomes blurr
when we turn to quantum mechanics.

Let us assume that we have a classical breather solu
with the corresponding phase-space trajectory lying o
torus. We can obtain such a solution by exciting a motion
the j th site of the lattice in the anticontinuum limit~without
intersite interaction! and then gradually switching the inte
site interaction on. This motion can be now quantized, res
ing in a set of wave functions,C j ,a($r i%) with a being the
quantum number. This step is not necessarily easy, and
not always be done analytically even approximately. Ho
ever, there are cases when it is possible, at least numeric

Now we have to recollect that an eigenfunction of
periodic Hamiltonian must satisfy the Bloch theorem, whi
states that

C~$r j1a%!5eikaC~$r j%!. ~1!

Herea is the lattice period, andk is the wave vector. Thes
functions are certainly extended, reflect the symmetry of
system and their classification can be carried out using
irreducible representations of the symmetry group of the s
tem. But in the classical mechanics all these were just
tures typical of the normal modes, meaning that quanti
ownloaded 27 Dec 2005 to 132.66.128.203. Redistribution subject to AIP li
ll-
e

ily
e
n
ld
s
d
e-
n

f

f
-

e
e
e
er

d

e
s

d

d
d

on
a
f

t-

n-
-
lly.

e
e

s-
a-
d

breather states cannot be distinguished from the quant
normal ~phonon! states, which also satisfy Bloch theore
~1!, or, at least, they cannot be distinguished along the gu
lines, used in classical mechanics~see discussion in Sec. II!.

Let us try to construct a quantum breather wave funct
in the form

Ck,a~$r j%!5
1

AN
(
j 8

eikr j 8C j 8, a~$r j%!, ~2!

whereN is the number of sites in the lattice. Obviously th
function satisfies the Bloch theorem~1! although it is con-
structed using only the site functions with a fixed value ofa.
This construction can be viewed as a tight binding appro
mation, often used when describing electron motion in a n
row band. The local functionsC j 8, a($r j%), if orthogonal-
ized, may play the role of the Wannier functions. In t
anticontinuum limit they are just wave functions of the sing
bond excitations and remain rather close to them as lon
the coupling parameter remains small enough.

A single phonon excitation, which in the classical m
chanics is associated with a normal extended vibration
obtained by quantizing the normal coordinates. Now ann
phonon function should be considered. A multiphonon st
is a symmetrized product ofn, single phonon wave function

Ck,n~$r j%!5PŜ)
i 51

n

wki
~$r j%!, ~3!

wherePŜ denotes the symmetrization of the product of fun
tions. The structure of the multiphonon wave function~3!
certainly differs from that of the quantum breather wa
function ~2!. In principle, the corresponding wave functio
can be also represented in the form similar to~2!. But the
corresponding Wannier functions will strongly differ from
the single bond excitations.

We can invert the question. Let us assume that we
given a functionCk($r j%), which observes the Bloch cond
tion ~1!, and we are asked to determine whether the giv
function represents a quantized breather or just a sym
trized product~or combination of such products! of single
phonon excitations. In both cases the function is exten
and may be classified according to the irreducible repres
tations of the crystal group. It means that the approach u
in Ref. 30 within the framework of the classical mechan
does not help.

On the other hand, the difference between the two sta
the quantum breather~2! and then phonon state~3!, is physi-
cally quite clear. A quantum breather forms as a result o
coherent tunneling of a high excitation of a bond, where
normal multiphonon states correspond to independent
tion of n low energy excitations extended over the who
crystal. Rather loosely we may say that in the quant
breather case all the ‘‘phonons,’’ or better to say bosons,
always coupled together on a bond. As for the multiphon
state the phonons are not coupled, move independently
actually never meet each other. The probability thatn inde-
pendent phonons meet simultaneously on one of theN bonds
of the lattice can be estimated asN2n.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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We may now try to formalize this intuitive understan
ing. It is rather easy to do for such models as discrete n
linear Schro¨dinger equation~DNLS! with the Hamiltonian

H5v0(
i

Ĉ i
†Ĉ i1

g

2 (
i

Ĉ i
†Ĉ i

†Ĉ iĈ i

1C(
i

@Ĉ i
†Ĉ i 111Ĉ i

†Ĉ i 21#, ~4!

where the operator of the total number of boson excitatio

B̂5(
i

Ĉ i
†Ĉ i

commutes with the Hamiltonian and the correspond
physical quantity conserves. Now the procedure, to be
ried out with the given wave function, is to measure t
probability of havingn phonons in a site. The operator fo
such a probability can be defined as

B̂(n)5(
i

1

n!
Ĉ i

†nC i
n . ~5!

Calculating the expectation value,^B̂(n)&breather, of this
operator for the quantum breather function~2! one gets ex-
actly 1 in the anticontinuum limit, and a finite quantit
smaller than 1, for a finite coupling. The expectation value
this operator for the multiphonon function~3! is of the order
of N12n and tends to zero in the thermodynamic limit (N
→`) for any n>2. This procedure can be also applied
other Hamiltonians, for which the number of boson exci
tions does not necessarily conserve. The most impor
property of a wave function, indicating that it represents
quantum breather state, is that the corresponding expect
value of the operator~5! remains finite in the thermodynami
limit.

The quantum breather states,C j 8, a($r j%), form a band,
which may be called the breather band, generated from
ath quantum state of an individual bond. In the weak co
pling limit the band spectrum in the one-dimensional cas

Ea~k!5t0a12~ t0aSa1t1a!coska, ~6!

where t0a5^C j ,auHuC j ,a&, Sa5^C j ,auC j 61,a&, and t1a

5^C j ,auHuC j 61,a&.
The most important parameter here ist1 , which gives

the probability amplitude of a tunneling translation of
quantized local vibrational excitation by one lattice spaci
The problem of its calculation was addressed in several c
texts. It seems that it is sufficient to consider two adjac
anharmonic bonds~a dimer!, where in the classical case tra
jectories appear, which are not invariant under permuta
of the bonds, meaning that one bond may be strongly exc
whereas the other bond remains at a much lower degre
excitation. Quantum mechanics would allow a tunneli
transition when the excitation energy is transferred from o
bond to another.

An estimate for such tunneling probability was given
Ref. 22 for a transition between two Morse oscillato
coupled by a bilinear interaction. An assumption was ma
that one oscillator is excited at a high quantum staten while
ownloaded 27 Dec 2005 to 132.66.128.203. Redistribution subject to AIP li
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the second one was in its ground staten50. Then the ex-
change of this excitation between the two oscillators w
estimated by perturbation theory. A better estimate for
breather tunneling transition was presented in Ref. 34 for
integrable dimer was considered. The DNLS Hamiltonian~4!
with only two sites was considered, for which the tunneli
probability is

2nC

~n21!! S C

g D n21

. ~7!

A more general equation when a tunneling exchange
tween two not equally excited bonds of the dimer take pla
can be found in Ref. 35. This tunneling probability is sma
moreover, it decreases rapidly with the growth of the exc
tion numbern.

Now a question may be asked: Is there any differen
between the tunneling transfer of a vibrational excitation
tween the two bonds of a dimer and a similar tunneling in
lattice with macroscopically large number of sites? A diffe
ence may appear since the tunneling object interacts w
extended normal oscillations—phonons, and the tunne
probability can be strongly renormalized by this interactio
The influence of interaction of a tunneling particle with e
tended excitations on its tunneling has been studied in m
details, see, e.g., Ref. 36. One of the most interesting p
nomena predicted in these studies is a possibility of a t
neling suppression,37 which may take place in the so-calle
Ohmic case, when the density of the extended excitation
linear.

This suppression is due to the behavior of the interact
of the tunneling particle with the continuum of extend
states, which in the Ohmic case becomes divergent in
‘‘infrared’’ limit. The question whether the same divergen
may happen in the case of breather tunneling is addresse
Ref. 38. The analysis carried out in this paper demonstr
that there is an important difference between the phase-s
tunneling of a localized vibrational excitation and the re
space tunneling of a particle. The local vibrational excitati
is characterized by its own internal frequency,V, which in-
terfere with the continuum of the extended excitations a
leaves no room for the above ‘‘infrared’’ divergence.

Then an adiabatic approximation can be applied, ass
ing the internal motion to be more rapid than the moti
associated with the ‘‘infrared part’’ of the spectrum of th
extended normal vibrations. The final conclusion of Ref.
is that the tunneling probabilityt1 can be obtained from~7!
just by introducing a ‘‘renormalized’’ excitation number

ñ5nS 11(
n

Cn
2

V2vn
D

instead ofn, whereCn is the coupling of the local excitation
with extended excitations, characterized by the frequen
vn .

An illuminating discussion of quantum breathers on
periodic one-dimensional lattice was carried out in Refs.
and 40~see also Refs. 11 and 41! using the example of the
quantum DNLS. This model conserves the total number
bosons, so that using number state representation the q
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tum problem is reduced to diagonalization of finite size m
trices, when considering a system with a finite number
sitesN, and a finite number of bosonsn.

In particular, the band energy was calculated in two
teresting cases. The band energy of a two boson brea
state in DNLS lattice forN→` and an arbitrary value of the
anharmonicity versus coupling ratio,g/C, is

E2~k!52Ag2116C2 cos2~ka/2!,

which converges to the form~6! in the limit of smallC. The
spectrum is also found in the limit of large anharmonicityg
and for an arbitraryn,

En~k!5
1

2
n~n21!g2

2nCn21

~n21!!gn21 coska. ~8!

The first term in~8! is the energy of an individual bond wit
n bosons, whereas the second term can be, up to a nume
factor, obtained using Eqs.~6! for the breather band energ
and ~7! for the tunneling amplitude in the NLS dimer.

A detailed discussion of two coupled phonons in m
lecular crystals, biphonons, was carried out in Ref. 16. I
quite clear that two coupled phonons make just the minim
condition for a quantum breather. Several quantum brea
bands were also obtained numerically in Ref. 42. Referen
43 and 44 consider a model, where the nonlinearity app
due to a strong coupling of Einstein modes with electro
and analyze some properties of then boson bands. The re
sults were successfully applied to the interpretation of
Raman scattering data in mixed valence transition m
complexes.45

Many of the above considerations reflect our expec
tions of the quantum breather behavior and are based on
general ideas as quantum levels and bands, Bloch theo
phase space tunneling and so on. They are also confirme
findings in papers referred to above. It is obvious that t
approach works well in the anticontinuous limit (C50)
when the onsite oscillators can be considered as indepen
Then an excited state of an individual oscillator does
decay and the probability of tunneling of such an excitat
to another site is zero. The Bloch type construction~2! is
formally an eigenfunction of the whole Hamiltonian. Th
question addressed by MacKay46 was, does a small but finite
couplingC introduce also a finite perturbation to this patte
so that this perturbation does not depend on the numberN of
the lattice sites and, hence, does not diverge withN. The
answer is positive and a proof is presented in the paper46 that
there is a certain, small but finite, range of the coupling
rameter values where the above quantum breather prope
hold.

The question, what limits this range from above, rema
open from the rigorous mathematical point of view. Howev
some physical arguments can be presented here. W
gradually switching the coupling on, the breather band
comes broader and its ‘‘center of mass’’ shifts either upw
or downward. This broadening, when comparable with
energy gap between the different breather bands, will
tainly destroy the breather character of these bands. H
ever, the event, which most probably happens earlier
crossing of a pair of still narrow breather bands. This
ownloaded 27 Dec 2005 to 132.66.128.203. Redistribution subject to AIP li
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illustrated in Fig. 1. Certainly the crossing should be ma
avoided when the symmetry requires it. Such crossings
usually associated with the so-called chaos assis
tunneling.47,48

This picture reflects our optimistic expectations tha
breather band survives quite a few crossings without los
its specific features. A support for our belief that this pictu
really holds, comes from studies.25,49 These papers conside
a trimer as a system mimicking the behavior of a larger s
tem. Tunneling pairs represent then the breather bands.
analysis carried out in these papers demonstrates that va
the parameters of the system leads to multiple crossing
these tunneling pairs. However, the pairs appear to be ra
robust creatures, capable of surviving many crossings w
out losing their quantum breather identities. Certainly simi
analysis for a really large system is necessary, but it requ
a rapidly increasing~with the growing number of the system
sites! computer time and is still to be done.

IV. DYNAMICS OF A LOCALIZED QUANTUM
EXCITATION

The picture of quantized breathers as described in
previous section is similar to that of quasiparticles moving
a band. Due to very small tunneling probability, which d
creases exponentially for higher excitation levels, the wi
of this band is extremely small, or, in the other words, t
effective mass of the quasiparticle is very large. Thinki
about dynamics of such an excitation, at least two aspect
it may be discussed.

First, a large tunneling time implies that the excitatio
stays predominantly at the same site of the lattice. An in
action of such a quantum state with available extended e
tations may cause its decay. This issue is discussed in R
50 and 51. Highly excited local anharmonic excitations a
assumed to exist and to be linearly stable. Then a sec
order coupling of the breather and phonon coordinates is
principle, allowed~two phonon processes!. Various regimes
of the breather relaxation are considered with the conclus

FIG. 1. This figure illustrates broadening and crossings of breather ba
with increasing coupling parameter. Pairs of lines show boundaries of
breather bands, which change their energy, broaden and may cross
other with the increase of the coupling.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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that the relaxation may proceed not necessarily exponent
but rather with a possible emission of phonon bursts.

Second, if the decay time of a quantum breather app
to be long enough, then the breather can be thought abo
a heavy particle moving or, better to say, diffusing in a n
row band. Various aspects of quantum diffusion of ordina
heavy particles, say, hydrogen interstitial atoms in crys
were studied~see Ref. 52 and references therein, a desc
tion of the principle features of the quantum diffusion is a
presented in Ref. 53!. The principal aim of these studies wa
to understand the low temperature behavior of the diffus
coefficient. The most important factor determining the diff
sion is the interaction of the heavy particle with the phono
At any reasonable temperature the typical phonon ene
may be larger than the band width. Therefore a single p
non may easily destroy the resonance between two neigh
ing sites and hinder tunneling. Then the diffusion coefficie
will decrease with the temperature. On the other hand,
~or many! phonon processes may help the tunneling proc
and stimulate it, which results in a growth of the diffusio
coefficient with the temperature. These two compet
mechanisms may lead to a nonmonotonic low tempera
dependence of the diffusion coefficient. Besides these p
non mechanisms governing the quantum diffusion of he
particles, one should also take into account that defe
which inevitably appear in any real lattice, create stress fie
around themselves and can relatively easy block the tun
ing by breaking the resonances between the bonds.

All this being said about the quantum diffusion of
heavy particle and in spite of the obvious analogy betw
the quantum breathers and heavy particles, one shoul
cautious when transferring the knowledge available
heavy particles into the field of quantum breathers. An
ample of possible differences was indicated in our pap38

where the absence of tunneling suppression for quan
breathers was demonstrated. It still remains a topic for
future to study quantum diffusion of quantum breathers.

V. CONCLUSION

The reader can now see that the progress made till
in our understanding of quantum breathers is rather lim
to say the least. It is worth mentioning here some more
evant references, especially the experimental ones. The
thors of Refs. 54–57 observe breather modes in mixture
4-methyl-pyridine. They analyze their data by means of
quantum sine-Gordon equation. Breather excitations are
observed in Cu benzoate58 by the electron spin resonanc
technique. The results for this quantum system are well
terpreted by means of the classical sine-Grodon equation59,60

Measurements,45 mentioned above, are most relevant to t
current discussion since the discreteness appears to be im
tant for their interpretation. The most recent publicatio61

describes the observed slow relaxation in doped alk
halides. The authors make use of the Fermi–Pasta–U
~FPU! model and introduce an entity, which they call ‘‘FP
soliton.’’ In the context of their paper it is the same breath
It is interesting also to mention that some ideas related
quantum breathers find now application to such system
ownloaded 27 Dec 2005 to 132.66.128.203. Redistribution subject to AIP li
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coupled Bose–Einstein condensates,62 which are well de-
scribed by the DNLS or Bose–Hubbard model.

We may now compare the flourishing field of classic
discrete breathers, where dozens of papers are being
lished every year, studying many subtle details of breath
their dynamics, their interactions with other breathers or w
extended excitations, with the scarce information and a sm
amount of papers on the quantum discrete breathers accu
lated during, say, last decade. One may ask a question: W
is it so? Why does the field of quantum breathers not att
much more attention? I present here my opinion, which m
be at least part of the answer. In many cases a study
certain breather related phenomenon~classical! is carried out
in the following fashion. One chooses a model system, c
taining a certain amount of sites, large enough to be a g
approximation for ‘‘infinite,’’ runs a computer simulation fo
a time, which is long enough to be considered ‘‘infinite,’’ an
gets some results. This procedure plays a role similar to
of an experiment, which measures properties of the brea
Then one can try to apply various analytical methods in
der to get an understanding of the observations, i.e., to m
a theory.

This type of work became possible in the 1990s wh
workstations started being easily accessible. Try now
imagine the same approach to a quantum breather. Clas
breather requires a consideration of an isolated orbit in
phase space of the system. Quantum breather requires a
sideration of a wave function or, say, of a Wigner distrib
tion. It is quite clear that the amount of information to b
crunched by the computer may be many orders of magnit
larger in the quantum case. This makes a real computer
periment on the scale similar to that regularly done for cl
sical breathers, hardly possible, if the limitations of the c
rently available computers are taken into account, a
strongly cripples our efforts to study quantum breathe
Shall we wait for the advent of new much more power
computers, or maybe some new bright ideas will clear
way? We will see in the future.
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