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We study, by incorporating short-range ion-surface interactions, ionic profiles of electrolyte solutions
close to a non-charged interface between two dielectric media. In order to account for important
correlation effects close to the interface, the ionic profiles are calculated beyond mean-field theory,
using the loop expansion of the free energy. We show that how it is possible to overcome the
well-known deficiency of the regular loop expansion close to the dielectric jump and treat the
non-linear boundary conditions within the framework of field theory. The ionic profiles are obtained
analytically to one-loop order in the free energy, and their dependence on different ion-surface
interactions is investigated. The Gibbs adsorption isotherm as well as the ionic profiles is used to
calculate the surface tension, in agreement with the reverse Hofmeister series. Consequently, from
the experimentally measured surface tension, one can extract a single adhesivity parameter, which
can be used within our model to quantitatively predict hard to measure ionic profiles. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4963083]

. INTRODUCTION

Ion-specific effects have already been observed in the late
19th century, when Hofmeister' measured precipitation of
proteins in various electrolyte solutions and found a universal
series of ionic activity. The same Hofmeister series emerged
in a large variety of experiments in chemical and biological
systems.p1 Among them, we note measurements of forces
between mica or silica surfaces,’™’ osmotic pressure in the
presence of (bio)macromolecules,®’ and surface tension of
electrolyte solutions.'*!!

Various measurements of surface tension of electrolyte
solutions indicate that the surface tension increases as a
function of ionic strength. Wagner'? was the first to connect
this finding with the dielectric discontinuity at the air/water
interface. He suggested that the image-charge interactions
(resulting from the dielectric discontinuities) are the cause
for this increase. Onsager and Samaras (OS) implemented the
same idea in their pioneering work in the 1930s'® and found
a universal limiting law at low salinity for the surface tension
augmentation. The OS calculation uses the Debye—Hiickel
theory of electrolytes,'* and their result depends on the
dielectric mismatch at the interface and on the bulk salt
concentration. However, this simplified prediction is not
observed in many experimental situations'> and led, over the
years, to numerous investigations of ion-specific interactions
of ions at surfaces (for a review, see, e.g., Refs. 15 and 16).

Recently, we have related the Hofmeister series with
ionic-specific ion-surface interaction,'”>'3 through an analyt-
ical calculation of the surface tension for different electrolyte
solutions. Using one fit parameter, the reverse Hofmeister
series for air/water as well as oil/water interfaces was obtained
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and compared favorably with experiments. We have shown
that how image-charge and ionic-specific interactions emerge
naturally from the one-loop expansion of the free energy.

Using a completely different approach, Netz and co-
workers calculated the surface tension'®?” as well as the
ionic profiles?! for both charged and neutral surfaces, using
a two-scale (atomistic and continuum) modeling approach.
The ion-specific potential of mean force was obtained
using explicit solvent-atomistic molecular-dynamics (MD)
simulations. These interaction potentials were then added to
the Poisson-Boltzmann (PB) theory. Within this framework, it
was shown that the polarity of the surface can reverse the order
of the Hofmeister series. It indicates that the Hofmeister series
depends both on the ionic specificity and surface properties.

Another approach was suggested by Levin and co-
workers,?> who calculated numerically the surface tension
and ionic profiles of polarizable ions. Their model modifies
the PB theory by adding an ion-surface interaction potential.
The ion-surface interaction includes several terms that are
added ad hoc to the Boltzmann weight factor. These terms
include image-charge interaction, Stern exclusion layer, ionic
cavitation energy, and ionic polarizability. While the additional
interaction terms may represent some physical mechanisms
for ion-specific interaction with the surface, this approach is
not self-consistent. One cannot, in general, add such terms to
the mean-field potential as they are not independent. '+

In order to shed more light on the Hofmeister series,
we propose an analytical approach to calculate systematically
ionic profiles close to a dielectric jump. The present work com-
plements the above-mentioned numerical and two-scale ionic
profile studies. In our scheme, ionic profiles are calculated
within one-loop order of the free-energy, while accounting
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for ionic-specific interactions. Hence, the boundary condition
becomes non-linear and depends on the ionic density itself.
Using the Gibbs adsorption isotherm, we are able to obtain
the air/water (and oil/water) surface tension of different
electrolyte solutions, in agreement with the reverse Hofmeister
series. Furthermore, the surface tension is obtained from the
microscopic ionic profiles and complements the macroscopic
approach as was suggested in Refs. 17 and 18. One of our
important results is a quantitative prediction of the hard to
measure ionic profiles. We achieve this prediction by using a
single fit parameter for the macroscopic surface tension.

Ionic-specific interactions at the surface break the
symmetry between anions and cations, essentially because
of the different hydration shell around cations and anions.
This gives rise to a non-zero mean-field (MF) electrostatic
surface potential. However, as will be demonstrated in this
work (see also Ref. 18), when the surface interactions are
small compared with the thermal energy, kT, the dominant
contribution to the surface tension still comes from the OS
mechanism. This means that modeling the surface tension
and ionic profiles at the air/water interface (and similarly at
other neutral interfaces) requires to take into account the OS
image-charge interactions. In our model, the OS mechanism is
included in the correlations calculated within a loop expansion
of the free energy.'®

The major difficulty in employing the loop expansion
for the ionic profile calculations is the well-known deficiency
of the loop expansion close to dielectric discontinuities?>>*
(see also Appendix C for more details). In the past, different
approaches overcame this limitation using techniques such
as variational methods,’*2® modified one-loop theory that
retains the singularity in the Boltzmann factor,?’ or the
cumulant expansion method that is a re-summation of the
loop expansion.?*»?® Using these methods, ionic profiles and
surface tension were calculated, but ionic specific effects were
not included.

In the present work, we choose a different approach to
overcome the deficiency of the regular loop-expansion. We
do not expand the densities to one-loop order, but employ a
re-summed loop-expansion that is equivalent to a cumulant
expansion around a fixed (non-zero) value of the electrostatic
potential.

The outline of this paper is as follows. In Sec. II we
present the model and include a general derivation of the
grand-potential to one-loop order and the formalism needed
for the calculation of different thermodynamical averages. We
then discuss the loop expansion (Sec. I A) and the limit of
the microscopic proximal layer (Sec. II B). The electrostatic
potential is calculated to one-loop order in Sec. II C, the
Green’s function is computed in Secs. II D and II E and we
calculate the fugacities to one-loop order. The main results
of this paper are the one-loop ionic profiles, presented in
Sec. III A, and the resulting surface tension in Sec. III B.
Finally, we discuss our results in Sec. IV and conclusions in
Sec. V. In Appendix A, we show in detail the formalism for
calculating the electrostatic potential to one-loop order, and
in Appendix B we present the details of the Green’s function
calculation. Appendix C includes a discussion on the limita-
tions of the regular loop-expansion close to a dielectric jump.
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Il. THE MODEL

Consider an ionic solution that contains symmetric
monovalent (1:1) salt of charges +e and of bulk concentration
np, as depicted in Fig. 1. The aqueous phase (water) is a slab
of volume V = AL with a cross section A and an arbitrary
large length, L — oo, separated from the air phase by an
interface at z = 0. The air and water phases are taken as two
continuum media with uniform dielectric constants &, and &,
respectively,

£(r) = {8“ e<0 0

gy 2207

The model can also be applied to interfaces where the air is
substituted by another immiscible liquid, such as an oil phase.
In that case, g, is the oil dielectric constant.

Due to the large ion self-energy (~100 kg7 in the air or
~25-50 kgT in oil, where kg is the Boltzmann constant and T’
is the temperature), all ions are confined to the water phase.
Furthermore, we consider specific ion-surface interactions
within a proximal region inside the water phase (see Refs. 18
and 22 for physical justification of such a proximal layer).
The width of this region is denoted by d, and the ion-surface
interactions are modeled by a potential V.(r) for anions
and cations, respectively. For uniform and flat surface, the
ionic-specific potential depends only on the z coordinate,
Vi(r) = Vi(2).

The model Hamiltonian is

1 &2
H= 3 ; qiqu(r;,r;) — ENuself(ra r) + Z Ve(zi), (2)

where the summation is over all ions in the solution,
V.(z) is zero outside the proximal region, [0,d], and
q; = e are the charges of monovalent cations and anions,
respectively. The total number of ions in the system is
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FIG. 1. Schematic setup of the system. The water and air phases have the
same length L, which is taken to be arbitrarily large, L — co. A proximal
region, 0 < z < d, exists inside the water. Within this layer, the anions and
cations interaction with the surface is modeled by a non-electrostatic poten-
tial, V.(z). This proximal region will be taken as a surface layer of vanishing
thickness in Sec. IT B.
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N = N, + N_, where N, is the number of cations and anions,
respectively.

The first term in Eq. (2) is the usual Coulombic
interaction between all ionic pairs satisfying V - [e(r)Vu(r,r’)]
= —4x6(r —r’), and the second term is the subtraction of
the diverging self-energy (i = j) of point-like ions from
the first term. This diverging self-energy is independent of
the dielectric discontinuity. Namely, it represents the energy
needed to produce a single ion in bulk water and does not

J
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depend on its spatial coordinate, i.e., uge(r,r) = 1 — 0. We
have to subtract this diverging self-energy as it only adds an
infinite constant to the free-energy. As will be explained below
in Eq. (5), this self-energy term will be incorporated in the
definition of the fugacities. The third term is the ion-surface
specific interaction, accounting for all anions and cations
inside the proximal layer.

The thermodynamical grand-partition function, =, can be
written as

S u >N+ ST
Elps.hs] = * / Hdri Hdr] exp( B / dr(A.() [Vi(r) + ho(r)] + A(r) [V(r) + h_(r)] )
i=1 j=1
- § / ardr[e) + o) () [0 + 106 ). ®

where B = 1/kgT. The grand-partition function traces over
all degrees of freedom of the mobile (cations/anions) ions,
including the ion-surface interaction inside the proximal
region, V.. In writing E we have introduced an external fixed
charged density, p¢(r), and an external potential, s.(r). These
auxiliary fields are only used to calculate thermodynamic
averages of measurable quantities and are set to zero at the
end of the calculation. We have also introduced the density
operator, 71, for mobile cations and anions,

=) or-rd), 4)
J

with {ri.} being the cation and anion positions and &(r)
is the Dirac delta-function. The charge density operator
of mobile ions is defined via the density operator as
p(r) = g4 (r) + g_ii_(r). The above introduced self-energy,
up, is included in the definition of the fugacities, A.,

&y
s =a>exp(Bu)exp (Eut’gub) , (3)

with p. being the chemical potential of the cations and
anions, respectively, and {g = e%/e,kgT is the Bjerrum length.

J

(

The length-scale a is a microscopic length corresponding
to the ionic size, or equivalently to the minimal distance
of approach between ions (to be discussed later). For
simplicity, anions and cations are taken to have the same
size, a.

We proceed by rewriting the grand-partition function us-
ing the Hubbard-Stratonovich transformation.? It introduces
a new field, ¢(r), conjugated to the external fixed charge

density py(r),

@m) "pNT
vdet[u(r,r’)]
x [ Do e [ 0. +if [ ar ¢(r>pf<r>]
©)

Here we have used the functional integral representation,
where [ D¢(r) is a functional integral over all values
of the function ¢(r). This is the continuum limit of the
multiple integrals, [ Hﬁ\i , d¢(r;). The Hubbard-Stratonovich
transformation gives a new functional, S, that plays the role
of a field action and is defined as

—

':‘[pf7 hi]

S[¢,ha] = /dr[ﬁg_frr)[v(pf _ /l(e—iﬁ€¢—ﬁ[V++h+] + eiﬁe¢—ﬁ[V+h])] , @)

where the non-electrostatic potential V. is zero outside the
proximal layer, Eq. (2), and &(r) is the dielectric function
defined in Eq. (1).

In Egs. (6) and (7), we have used the inverse
Coulomb potential u~!(r,r") = =LV - [e(r)VS(r —r’)] that
obeys [ dr”u(r,r")u’l(r”,r’):6(1' r’). In addition, the
electro-neutrality condition, e(d, — A_) =0, requires that

y=A_=A.

The derivatives of the grand-potential, Q[py,h.]
= —kgT InE, give thermodynamical averages of measurable
quantities. For example, the average mobile ion densities can
be calculated from Eq. (6), yielding

(

0Q
6hy(r)

na(r) = (As(r)) = = AT V=) (8)

h+=0
Pf—

where (O) is the thermal average of an operator O,

[ D¢ O eI

(0=

) ©))

and S[¢] is evaluated at h, = 0.
Equation (8) gives the connection between the average
number of particles and bulk fugacity,
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N. d3r &, .
np = —< Vi> = / Vni(r) ~ /l/ 7 <€+lﬁe¢w>. (10)

The main contribution to the integral comes from the bulk
solution, for which the ion-surface interaction is zero and the
potential is constant and chosen to be zero, ¢, = 0.

Similarly, the well-known thermally averaged electro-
static potential, (), is given by

Y(r) = (ig(r)) = - Y

So()| a0’
pf=0

It is not possible to calculate analytically the averaged
electrostatic potential and ionic densities without further
approximations of the action S. In order to proceed, we
will approximate S using the loop expansion method.

A. The loop expansion

We employ the loop expansion technique as was described
in detail elsewhere®” and focus only on the one-loop correction.
To keep track of the expansion orders, we introduce an artificial
parameter, £, which plays the role of a real coupling parameter.
This parameter will be set to unity (£ = 1) at the end of the
calculation. Using the standard saddle-point method, one can
expand the action around its saddle point, ¢, satisfying

6S(¢]
o¢(r)

12)

d=—iy
pr=0

We make use of the two-point Green’s function G(r’,r”’; ),
as the propagator

/ dr” Sy(r, v )G, x5 ¢) = 8(r — '), 13)
with the Hessian, S(r,r’; ),
628[¢]
5P(0)0P(r') |,

and ¢ in Eqgs. (13) and (14) has been defined in Eq. (11). The
grand potential, Q[ py, h.], is expanded in powers of £, and to
one-loop order, this expansion gives'”!8

Q= Q)+ 0

So(r,r’s ) = (14)

kT

= kBTS()[—l'lﬁ()] + Trin Sg(l’, r’; 1,00) (15)

From Eq. (11) and the grand-potential expansion,
Eq. (15), it is clear that the electrostatic potential can be
written as ¢ = ¢ + £y, to one-loop order. Nevertheless, it
can be shown in a straightforward way that to the same one-
loop order, Q[+ {1] = Q[ig]. Thus, for the free energy
calculation, it is sufficient to calculate the potential at the
saddle point, ¥ = . Equations (8) and (15) imply that the
fugacity is also modified. To one-loop order, it is expressed
as the sum of two contributions: A = Ay + {4, where the
subscript in 4; and ¥;, i = 0,1, denotes the zeroth and first
expansion order, respectively.

It is known that the expansion around the saddle point
may lead to some inconsistencies due to mixing of different
loop orders (for more details, see Ref. 30). A common way
to avoid this difficulty is to perform a Legendre transform of
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the grand potential, denoted by I'[i, h.]. This functional is
called the effective action," and it depends on the thermally
averaged electrostatic potential, (r),

Meha] = Qlprh] + [ drumpse. (6

Using the definition of the electrostatic potential, Eq. (11), the
Legendre transformation yields 6T'[, h.]/5y/(r) = pg(r). The
equation of state is obtained as a special case for py = 0,

or'ly]
6y (r)

=0, (17
pf=0

and determines completely the electrostatic potential, (r).
The above equation means that y itself is the saddle point of
I', similarly to y( being the saddle point of the grand-potential,
Q. Expanding the effective action to one-loop, while dropping
irrelevant constant terms, gives30

BUIY] = STl + 5 TrnSrry), (8)

where the first term is the zeroth-loop order and the second
term is the one-loop correction.

B. The microscopic limit of the proximal layer, d — a

By using the action of Eq. (7) and the one-loop expansion,
Eq. (18), it is possible, but cumbersome, to obtain the ionic
profiles for a proximal layer having a finite width, d. Instead,
we take a different route and use the fact that the width of
the proximal region in which the non-electrostatic ion-surface
interactions are important is usually of order of the ionic size,
d = a.'8? Therefore, the potential V. can be averaged within
this proximal layer, yielding a new surface parameter, .., also
known as adhesivity,

d
e P = (V) = d! / dz e PV+, (19)
0

Note that to first order in a cumulant expansion, the adhesivity
simplifies to a. =~ (V.),. As the proximal layer size is
comparable to the ionic size, a, we treat it, within our
continuum approach, as a layer that collapses onto a surface
layer at z =0 and is kept in contact with the bulk ionic
solution. The field action, S, of Eq. (7) is then expanded to
first order in d, yielding'8

&(r)
S[¢7hi] = /dr[ﬁS—[V¢]2
s
- /1(6—1'/36¢—ﬁh+ + eiﬁw_,;h,)
- /ls(s(Z)(XJre_iﬁe(ﬁ_ﬁh* + Xeiﬁe¢—/3h):| )
(20)
with a conveniently defined new surface parameter,
XiEd(e_ﬁai—l), (21)

which depends only on @.. and d.
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Notice that a new surface fugacity A1y # A emerges from
the surface term. The surface fugacity is related to the effective
number of anions/cations on the surface (or equivalently
inside the collapsed proximal layer), N& = —159Q/d A, with
A; = Adgx+. In the limit of a vanishingly small proximal
layer, some of the ions are effectively forced to reside on
the interface. This is in contradiction with our explicit (and
well justified) assumption that all ions are inside the water
phase. To treat this artificial situation, one has to take into
account the surface self-energy, ug, that differs from the bulk
one, up. This is the reason that we introduce the surface
fugacity, Ay = A exp[e,f(us — up)/2], which includes the ion
self-energy on the surface, ug # up.

Because the field action, Eq. (20), is written as a sum of
surface and bulk terms, the corresponding densities are then
given separately by

(r) = - /l Fifed ,
1(0) = S o (e5%)
p§=0 (22)
nt = <N3i> =1 X <e$iﬂe¢(z:0)>
N A sSAx .
It can be shown that the effective surface densities, n{, are equal

to the difference between the densities in the proximal region
(0 < z < d) and sub-proximal one (d < z < 2d). Therefore,
n can be negative for repulsion of ions from the proximal
layer, a. > 0.

Hereafter, we will use the mapping into such a surface
layer of zero width, where the entire proximal layer is
collapsed to z = 0. Thus, all distances are measured from
the outer boundary of the proximal layer (z = d of Fig. 1).
In this mapping, the parameter d is only taken into account
implicitly via the surface parameter y ..

C. Electrostatic potential

As noted earlier, the electrostatic potential is determined
by the equation of state, Eq. (17). Its general formalism
to one-loop order is presented in Appendix A. The zeroth
order in the loop expansion, Eq. (AS8), is the well-known
Poisson-Boltzmann (PB) equation for planar geometry,

Yy (2)=0 7 <0,

wi(2) = T Goh (Bewo) 2> 0. 3)

w

The electrostatic boundary condition at z = 0, Eq. (A9), is
rather special and involves a relation between the surface
potential, g = o(0), and its left and right derivatives,

Uil = lime—oelv/ ().

Ewliily: — Ealiily. = —4medo(xe PV — x PYs). (24

Note that in the zero-loop order, the surface and bulk fugacities
are equal, Ag = /lf)s), because the self-energy affects only the
one-loop fugacities.

For simplicity, we assume that the mean-field (MF)
potential is small, Seyy < 1, and the PB equation for z > 0
reduces to the Debye-Hiickel (DH) equation,

¥l = kpo (25)
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where
kp = (87lgAy)'/? (26)

is the inverse Debye length. The DH linearization can be
justified for a_ ~ @, and, in particular, for Sa. <« 1. The
asymmetry between cations and anions is manifested in a.,
but for similar adhesivities (@- ~ @), the asymmetry between
cations and anions is small, and the resulting effective surface
charge density (calculated within MF) is also small. In this
case, the linearized boundary condition yields

8wlﬂ6| L Suw(l) B
0 0

= —4r o[ x+ (1= Bewy) — x- (1 + Bewsy) |. 27)
To order O(x+ — x-), the DH solution for the MF potential
yields
Ko (X+— X-) <0,

P — Z
2+ xkp(x++ x-) (28)
z > 0.

,B@l,[/()(z = 0) = :Be‘ﬁs =

Yo=Yy s€ D¢
The one-loop potential is obtained in Appendix A
(Eq. (A10)). It is written in terms of the Green’s function
and the one-loop correction to the fugacity to first order in ¢,

lﬁl(z)=ﬁe/dr'G(r,r’) 2Bedog

1 A
X (E 22G(r',r') — /l_(]))

= 8(2) A0+ = x- = Bewo L+ + x-)
s)
X (%ﬁzezG(r’,r') - /;—10)\ . (29)

For simplicity, in Eq. (29) and hereafter, we suppress the
explicit dependence of the Green’s function on the electrostatic
potential, i.e., G(r,r’;¥o) — G(r,1’).

To complete the calculation of the one-loop potential, we
need to find the Green’s function and the one-loop correction
to the fugacities. This will be done in Secs. II D and II E.

D. Green’s function
The Green’s function defined in Eq. (13) for the action S

of Eq. (20) satisfies

[—fv (2()V) + y(z)] G(rr)=6(r-r), (30)
T
where

¥(z) = 210B%* cosh(Bey)
+ B2?208(2) (x4e PV + y_ef¥),  (31)

and A is the zero-loop fugacity. The system is translational
invariant in the transverse (x, y) directions, and we can use
the Fourier-Bessel transform by integrating out the angular
dependence in polar coordinates,

1 . r
G(r,x') = m / dk g(k;z’z/)elk-(pfp)

1 ! !’
= / dkk gk:2.2)do(klp - pD).  (32)
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where Jj is the zeroth-order Bessel function of the 1st kind,
p = (x,y) is the in-plane radial vector, and k = |K|.

As noted after Eq. (24), similar adhesivities correspond
to weak MF potentials, Seyy < 1, and the solution for the
Green’s function to the first order in ¥ (see Appendix B for
details) is

g(k;2.2) = [1+&(R)] et z<0,
s , (33)
g(kiz.7) = [e T4 £(k)e P 220,
Bewp
where we have defined (see also Appendix B)
Ewp — 8ak — Vs
)y s —————,
Ewp + 8ak + Vs (34)

1
Vs = ESwK%) [X+ (1 - ﬂed’x) + X- (1 + ﬁe'r//v)]

and recall that p = ([k% + KZD. Because ¢ ~ y+ — x—, we can
write vy, to order O(y+ — x-) as

1
Vs = 58ukh (X + X-). (35)

Of special interest is the equal-point Green’s function,

[1+&k)e %], (36)

Aok
G(z) = G(r,r) = / dk
0 138 wP

where A = 24/7/a ~ a~! is a microscopic cutoff and a is the
minimal distance of approach between ions, defined earlier.
Note that for a — 0, the Green’s function diverges. This is an
artifact of the electrostatic interaction ~1/r between point-like
ions, which diverges as r — 0. In real systems, the ions have
finite size that introduces a minimal distance of approach.
However, this distance is usually much smaller than any other
system length-scales and can be taken safely to zero in many
cases.

E. Fugacities

The ionic profiles can be calculated from Eq. (22), while
the fugacity, 4, is related to the bulk density, n,, through
Eq. (10). It is, therefore, necessary to compute the thermal
average, (e*1Fe?),

Employing the expansion of Eq. (18) and using once
again the Hubbard-Stratonovich transformation yield

2,2
<e¢i/3€¢> = exp |:$Bel// - ﬁze ¢ G(Z)]
2,2
= exp [159 (o + Cy1) = ﬁze ‘ G(Z)] . (37)

We proceed to determine the bulk fugacity from Egs. (10)
and (22), and the above equation. The bulk fugacity is
determined by the constraint that the densities at z — oo
should match the bulk density, 7y,

1 32,2
np = n.(z — o0) = Qe 2F ¢l GEm™)

z/lo(l+€

A 1 22

The above equation and Eq. (36) for the Green’s function,
G(z), give the zeroth-order contribution and the one-loop
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correction to the bulk fugacity,
Ao = /lﬁf) = np,

A 39
L= 3P0 = 2 ok = - ko)
where Be’G(z — ©)/2 = e’up,/2 is exactly half of the
electrostatic energy needed for adding an ion to the bulk
electrolyte solution.

A similar reasoning relates the one-loop surface fugacity
to the electrostatic energy, e’u,, required to place an ion
onto the air/water interface, where salt is absent (kp = 0).
The one-loop correction to the surface fugacity is then easily
obtained from Eq. (36) as

A9 ulBA
T =5FCG =0 =0)= P (40)
0 w ‘9(1

where B¢’G (z = 0; kp = 0) /2 = €’uy/2.

We note that the difference between A; and /l(ls) is an
artifact arising from the decomposition of the free-energy to
bulk and surface terms. The surface ions are treated as they
are half in the water and half in the air (see Ref. 32 for the
calculation of the ion self-energy at the surface).

At this stage, we can write the one-loop potential by
substituting the MF potential of Eq. (28), the Fourier-Bessel
transform of the Green’s function, Egs. (32) and (33), as well
as the above fugacity expression, Egs. (39) and (40), into
Eq. (29). This then yields

Yi(z) = %KDwaO(Z)/dkE
P

1 —e 2P £(0) + e 27
8 g(k)( 2p 2(p + kp) )
1+ £(0) 2e4p
R (1+§(k)——(8w+8a)k”. (41)

The above expression is one of our important results and will
be used in Sec. III to obtain the ionic profiles.

lll. RESULTS

We first derive the expressions for the ionic profiles close
to the surface and the total amount of ions contained within the
proximal region. Then, we use the Gibbs adsorption isotherm
to obtain the interfacial tension and compare it to previous
results.

A. lonic profiles

In order to obtain the analytical expression for the ionic
profiles, we substitute the electrostatic potential, Egs. (28) and
(41), together with the equal-point Green’s function, Eq. (36),
into Eq. (22). The ion densities in water (z > 0) as a function
of the physical quantities, n; and y., are

n(z) = np exp —%ﬁQezf G,(z2) ¥ Be [Wo(z) + fwl(Z)]]

= e G115 Be[yolz) + ()] ). (42)
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where n.(z <0)=0 and G(z) = G(z) - G(z —» ). We
recall that the parameter £ should be set to unity at the
end (see Sec. II B). As we do not expand the densities to
order O(¢) (see Appendix C for further details), we need
for consistency to re-exponentiate the fugacity expression,
A= Ag+ €A =~ Agexp (£11/Ap), and use Eq. (39). In the
second line of Eq. (42) we have expanded the exponent
in order to keep only terms to order O(y+ — y-). We recall
that the model does not apply to the densities inside the
proximal layer, z € [0,d] of Fig. 1, and the above equation is
valid only outside this layer.

Although we cannot calculate the ionic profiles inside
the proximal layer, we can approximate the total number
of cations/anions (per unit area) in this layer, defined as
Ny/A = fod dz n.(z). In the spirit of Sec. II B, we expand
Eq. (8) to first order in d. Then, Eq. (42) is evaluated at z = 0*
and used*® to derive N If,

N 1
P npd exp [ - Ba. — 5,82@25 GS(O)

A
F Be [o(0) + 1 (0)] |
=~ npd exp [ - Ba. - %,826‘25 GS(O)]

x (15 Belwo(0) + yi(0)]), 43)

where in the last equality the electrostatic potential is expanded
to first order since we are in the DH regime.

As explained after Eq. (22), we treat the proximal layer as
a collapsed surface layer lying at the water/air interface, z = 0.
Namely, all distances are measured from the outer boundary
of the proximal region, z = d, in the original system depicted
in Fig. 1.

In Fig. 2 we compare the obtained one-loop and MF
ionic densities. The one-loop correction is significantly close
to the dielectric discontinuity. For . = 0.1 kg7, the MF and
one-loop concentrations coincide at z > 3d = 1.5 nm, while
for @y = 0.1 kgT and @_ = —0.5 kgT, the two profiles coincide
at larger distances of z 2 6d = 3nm. At these distances and
above them, the calculated densities almost reach their bulk
values.

The adhesivities in Fig. 2 correspond to repulsion
of cations and attraction of anions from/to the proximal
layer, reflecting an effective negative surface charge density.
Therefore, the cations are attracted to an adjacent “secondary
layer” (sub-proximal) where they accumulate. When the

J. Chem. Phys. 145, 134704 (2016)
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FIG. 3. One-loop ionic profiles for cations and anions obtained from Eq. (42)
as a function of the distance z from the air/water interface for different values
of a.. The black lines are obtained for @, =0.1kgT and a_=-1.0kgT
(dotted for cations and solid for anions), while the blue lines correspond to
a;+=0.1kgT and a@_=-0.5kgT (dashed for cations and dashed-dotted for
anions). In the inset (same units), we present the profiles for @+ =0.1kgT,
a_-=-1.0kgT (black dotted for cations and black solid for anions), and
a;=1.0kgT, a_=-0.1kgT (blue dashed-dotted for cations and blue
dashed for anions) to show the asymmetry between positive and negative
values of @, and @_. Other parameters are as in Fig. 2. The z =0 surface
is taken as the outer boundary of the proximal layer (z = d of Fig. 1).

bias, Bla,— @_|, becomes larger, the deviation of the
one-loop profile from MF is noticeable even farther away
from the surface. However, the cations’ density peak, which
corresponds to their accumulation at the secondary layer,
moves closer to the surface. At distances larger than the
peak position, z > z*, the MF and one-loop densities differ
only quantitatively, whereas the difference between the two is
qualitative in the peak region.

Figure 3 presents different values of the adhesivities,
a4 # a-. One can notice as a general trend that when the
bias becomes larger, the density peak of the secondary layer
increases in its height and shifts towards the air/water interface.
In the figure we show this trend by fixing a; = 0.1 kgT
and plotting two different values for the anions’ adhesivity,
a_ = —0.5kgT and a_ = —1.0 kgT. For the former case, the

FIG. 2. Ionic profiles as a function of
the distance z from the air/water in-
terface. The one-loop ionic profiles for
cations and anions (Eq. (42)) are com-
pared with the MF profiles (computed
without taking into account ¢ 1 and G).
In (a) we use a.==0.1kgT, while in
_ (b) @+=0.1kgT and a@_=-0.5kpT.
Other parameters are 7 =300K, &,
i =80, e4=1, d=a=0.5nm, and n,
(b) =0.1M. The z=0 surface is taken
as the outer boundary of the proximal

= = = cations (1-loop)
anions (1-loop)
----- cations (MF)
---------- anions (MF)

T
1+ 12
1k
0.8 - -
o = 08
~ p = = = cations (1-loop) ~
g anions (1-loop) g 0.6
041 | | === cations (MF) B
.......... anions (MF) 04
0.2 -
0.2
(a)
0 ! ! ! ! ! 0
0 1 2 3 0

layer (z =d in Fig. 1).
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FIG. 4. One-loop ionic profiles for cations and anions obtained from Eq. (42) as a function of the distance z from the air/water interface for (a) different
salt concentration, ny, with d =a =0.5nm, (b) different cutoff, A =2+/r/a, with d =0.5nm and n;, =0.1M, and (c) different proximal layer width, d, with
a=0.3nm and np =0.1 M. Other parameters used are @, =+0.1kgT, and the rest are as in Fig. 2. The z =0 surface is taken as the outer boundary of the

proximal layer (z = d of Fig. 1).

density peak n* =~ 1.36n; is at z* =~ 0.45nm, while for the
latter, the density peak n* = 1.12n;, is at z* = 0.71 nm.

In Fig. 4 we present the one-loop ionic profiles for
(a) different salt concentration n,, (b) different cutoff
A =2+/r/a, and (c) different proximal layer width, d. We
use . = +0.1 kgT, which yields an effective negative surface
charge density. For higher salt concentration, the “second
layer” (sub-proximal) peak of the cation density becomes
more pronounced and moves closer to the interface (as occurs
for higher bias). For concentration of 0.1 M, the density peak,
n* ~ 1.07ny, is at z* ~ 0.5 nm, while for 0.5 M, it is located
at z* ~ 1.28 nm with a value of n* ~ 1.02n;. The variation of
anion concentration close to the surface increases with the salt
concentration, and both cation and anion profiles reach their
bulk values closer to the surface.

As seen in Fig. 4(b), the different values of the cutoff,
A, only affect the Green’s function as both ¥ and ¢, do
not depend on the cutoff, A. Therefore, different cutoffs only
change the density very close to the interface, and already at
distances z > d = 0.5 nm, there is no difference between the
ionic profiles for various cutoffs. This means that our theory is
quite robust for calculating ionic profiles and does not depend
strongly on the value of the A cutoff.

Figure 4(c) shows that by increasing the width of the
proximal layer, d, the density peak moves closer to the
interface and the difference between the anions and cations
profiles increases. A similar trend is observed by increasing
the salt concentration (see Fig. 4(a)), but the dependence on
d is found to be somewhat weaker. For proximal layer width
of d =0.5nm, the density peak is at z* =~ 0.94nm and its
value is n* ~ 1.05n;, while for d = 1 nm, the peak is located
at 7" ~ 1.25nm with a value of n* ~ 1.02n;. Furthermore,
unlike the salt concentration effect, changing the proximal
layer width reduces the profiles’ slope. The limiting bulk
values are obtained farther away from the surface and its
proximal layer.

B. Surface tension

We calculate the excess surface tension, Ay, to one-loop
order through the Gibbs adsorption isotherm by using the

one-loop ionic specific profiles for anions and cations. In
order to test our model, the results are compared with our
previous work,!” where the surface tension was calculated in a
different way, directly from the free energy. The latter method
is thermodynamically equivalent to the Gibbs adsorption
isotherm. Note that @ of Ref. 17 corresponds to a_ of the
present paper, and in order to make the comparison, we should
set o, = 0.

The Gibbs adsorption isotherm gives the excess surface
tension (with respect to the bare air/water interface),

)
sy =kt Y, [ [ineo-a. @
— Jo

For n.(z) we use Eq. (42) and the effective surface densities,
ni (see the equation in Ref. 40), where the integration is
performed on the bulk ionic concentration, 7.

Although the loop expansion is not fully justified for the
densities, it is valid for free energy and other macroscopic
quantities such as the surface tension, even in the presence of
a dielectric discontinuity (see Appendix C). When calculating
free energies (or surface tension), one has to expand all terms
to first order in £. Hence, we expand the surface tension to
first order in ¢ and write the one-loop surface tension in the
DH regime, O (x+ — x-), as

Ay = Ayg+ CAy = —np (x+ + x-)

L (kf (k,n’)
+¢ dn’ = [ dk| =22
/o 2 Jo pA(n’)

28w
ew+ea)

+5[1+§(k,n’)] - 45)
p
where ¢ is set to unity.

Our results are shown in Fig. 5 and are indistinguishable
from those of Ref. 17. In fact, we have compared numerically
the surface tension of Eq. (45) with Eq. (24) of Ref. 17, and
they are equal for the same values of a.. (or equivalently, y.).

We would like to emphasize that the surface tension
results can be used to predict quantitatively the corresponding
ionic densities. The surface tension can be measured with
commonly available techniques (such as the drop volume
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FIG. 5. Surface tension as a function of the salt bulk concentration, as
calculated from the Gibbs adsorption isotherm of Eq. (45). These lines are
in perfect agreement with the surface tension calculated directly from the free
energy, Ref. 17. The different lines refer to different values of @_=a and
d (while keeping a4+ =0). The comparison is done for the same parameters
used as in Ref. 17: @ =0.18kgT and d=0.71nm (black dashed-dotted
line) as was fitted in Ref. 17 for NaF, @ =0.135 kgT and d =0.69 nm (red
solid line) for NaCl, @ =0.069 kgT and d =0.69 nm (blue dashed line) for
NaBr, and @ =0.023 kgT and d =0.69nm (green double-dotted line) for
Nal.

technique). Then, the experimental results can be fitted with
Eq. (45) (or Eq. (24) of Ref. 17, which are the same for a, = 0)
in order to obtain the numerical values of the adhesivity
parameter, a.. The ionic densities can then be obtained from
Eqgs. (42) and (43), where the only fitting parameter is the
adhesivity, @..

IV. DISCUSSION

Figure 2 shows large difference between our obtained
one-loop ionic profiles and the corresponding MF profiles.
This difference is a result of the image-charge interaction,'?
which gives rise to strong repulsion of ions from the surface
at short distances, as demonstrated by the Green’s function
(see G4(z) of Egs. (42) and (43)). This repulsion depends
on the adhesivity and can be magnified (a. > 0) or reduced
(@ < 0). This is due to correlation effects that couple the ionic
adhesivities with their image-charge interaction at the surface.
Although at very small distances our continuum theory is not
accurate, it gives a qualitatively correct behavior, which is not
the case for the MF profiles.

The one-loop correction has a strong contribution close
to the interface. This is due to the Green’s function that
largely affects the density profile close to the interface.
Because the Green’s function is the same for cations and
anions, the cation/anion profiles at short distances (before the
apparent density peak) are rather similar. For larger distances,
the Green’s function decays exponentially, and the deviation
becomes larger as a function of the . # «_ bias.

J. Chem. Phys. 145, 134704 (2016)

On the other hand, the one-loop correction to the electro-
static potential has an opposite effect on cations and anions.
Thus, it results in an increased deviation from the cation/anion
MF profiles at intermediate distances from the interface. For
a small bias, @, ~ a_, the density profiles calculated from
one-loop and MF coincide before reaching their bulk values,
while for large bias, @, # a—, they only coincide farther
from the surface, when they reach their equal bulk value,
np. This effect is mainly due to the one-loop correction of
the electrostatic potential. Such a correction strongly depends
on the bias and has a longer-range effect than the Green’s
function. The electrostatic potential (MF and one-loop) also
has an exponential decay, but slower than that of the Green’s
function. The range of the one-loop correction increases with
the bias, leading to quantitative deviation from the MF profile.

Another remark is that there is no symmetry between the
positive (repulsive) and negative (attractive) values of a.. The
dependence of y. on the adhesivity through exp(—Ba.) is
asymmetric with respect to a; <> —as. This is clearly seen
in the inset of Fig. 3, where we compare the profiles for
the same bias @, = 0.1 kg7, @ = —1.0 kgT with the opposite
case of ay = 1.0kgT, a_ = —0.1 kgT. The two cases show
quite different profiles. The density peak of ions accumulated
in the “secondary layer” is higher and closer to the air/water
interface for the first case. This observation implies that the
negative values of . have stronger effect than the positive
ones.

For repulsive and large ion-surface interaction,
a. > SkgT, there is no observable difference between
different ionic profiles because the ions are completely
expelled from the proximal layer. This clearly is qualitatively
very different than the case of attractive ion-surface
interaction. In the latter case, the number of ions in the
proximal layer increases as «. becomes more negative. The
number of ions at the surface is not bounded as we assume that
the ion-surface is repulsive or slightly attractive. However, for
highly negative a .., our theory is violated as the weak coupling
limit we employed is not valid anymore. Furthermore, for such
strong adsorption, the steric repulsion at the proximal layer has
to be included and will give a bound to the number of ions at the
surface.

A. Comparison with previous models

In Fig. 6 we compare our predictions for the ionic profiles
with those obtained by Netz and co-workers (Fig. 3 B of
Ref. 21), and those of Levin and co-workers (Fig. 3 of
Ref. 22). In general, our analytical results compare favorably
with both previous models.

Figure 6 shows our computed ionic profiles, Eq. (42),
for Nal as obtained with the fitting parameters of Table II,
Ref. 18: @, = a, = 0.11kgT, a_ = a; = —0.071 kgT. The
density peak of Fig. 6, related to the accumulation of Na*
ions (dashed line) in the secondary layer, lies at z* ~ 0.25 nm,
and its value is n* ~ 1.2n;. The density profiles reach their
bulk value at z ~ 1.5 nm. As explained after Eq. (43), we treat
the proximal layer as a collapsed surface layer lying at z = 0.
Namely, all distances are measured from the outer boundary
of the proximal layer.



134704-10 Markovich, Andelman, and Orland

1.4 T T T T T

12 -

0 0.5 1 1.5
2z [nm]

FIG. 6. Ionic profiles for Nal obtained from Eq. (42) (one-loop) with @
taken from the fitting parameters in Table II of Ref. 18: a1 = @, =0.11 kgT,
a-=a,=-0.071 kgT. The black dashed line and the solid blue line cor-
respond to the Na* and I” ions, respectively. Other parameters used are
d=a=0.69nm, n; = 1M and the rest are as in Fig. 2. The profiles compare
quite favorably with those reported in Refs. 21 and 22.

The results in Fig. 6 are in good agreement with those of
Ref. 21. As our proximal layer is collapsed onto z = 0, only
distances away from the first density peak of I" in Fig. 3 B
of Ref. 21 should be compared to ours. The Na* density peak
of Ref. 21 is at a distance z ~ 0.3 nm away from the I~ peak,
and the ionic profiles reach their bulk values at a distance
z =~ 1.4nm away from the I~ peak. Moreover, the height of
the Na* density peak is n* ~ 1.2n,. All these findings agree
with our results (Fig. 6). The I™ profile becomes similar to
ours only at distances z 2 0.4nm =~ 0.58 - d away from the
proximal layer. This is not surprising as our results are not
very accurate for small distances, z < d.

Our profiles looks also quite similar to those of Ref. 22.
Again, one should compare distances only outside the
excluded region (where the Na* density vanishes in Fig. 3 of
Ref. 22), and not within the proximal layer of the interface
(the Gibbs dividing surface). The Na* density peak of Ref. 22
is located at z* =~ 0.35 nm away from the excluded region and
has a peak value of n* ~ 1.1ny, while the ionic profiles reach
their bulk values at z ~ 1.5 nm.

V. CONCLUSIONS

We have presented a model for ionic profiles in the
proximity of an interface that has a sharp dielectric jump. We
considered separately ionic-specific interactions for anions
and cations, modeled by two adhesivity parameters, «... These
added surface interactions are formulated as a self-consistent
non-linear boundary condition.

Ionic densities are calculated analytically from one-loop
order of the free energy in the Debye-Hiickel (DH) regime,
assuming that the surface-induced bias towards one of the ionic
species, B|a_ — @/, is small. The theory is less applicable for

J. Chem. Phys. 145, 134704 (2016)

high biases because of the limitation of the linear DH regime.
However, one could apply the same formalism to the full
non-linear PB with the same non-linear boundary condition
and the appropriate Green’s function. It is more cumbersome
but doable.

In order to simplify the calculation, we require that the
proximal layer is microscopically small. For proximal layer
with width comparable with the minimal distance of approach
of the ions, d ~ a, there is not much sense in discussing the
profiles inside the proximal layer. It is straightforward but
tedious to calculate analytically the ionic profiles for proximal
layers of finite thickness. This will allow calculations of the
ionic profiles inside the proximal layer.

It is important to stress that we do not use the regular
loop-expansion for the densities, as it fails close to a dielectric
jump. Instead, we expand the free energy to one-loop
order and compute the corresponding ionic profiles from
it. This re-summation of the loop expansion is equivalent
to a cumulant-expansion around a non-zero value of the
electrostatic potential.

Our analytical results present ionic-specific profiles close
to dielectric discontinuities and are in agreement with previous
ionic profiles obtained from simulations?! and numerical
calculations.””> We have recovered the same surface tension
results as in Refs. 17 and 18, and they correspond to the reverse
Hofmeister series. The method gives precisely the same
results as from direct free energy calculations of the surface
tension.!”!® Therefore, one can use the fitted o, parameters,
determined by macroscopic surface-tension measurements of
specific electrolyte solutions, to obtain their ionic profiles
close to the air/water interface. The same calculations can
be also performed at the oil/water interface, with other fitted
values of the adhesivity, a..

Itis possible to determine the adhesivities values, @, from
quantum chemistry simulations, or from a more microscopic
approach that will include ion-solvent interactions close to
the interface. As explained above, in a coarse-grained theory
one averages over length-scales of the order of the ionic
size, which is also the characteristic length-scale of the ionic
specific potential, V,..1822 In the future, it will be of merit to
calculate from the ionic profiles, other macroscopic quantities
(beside the surface tension), such as the differential capac-
itance,* the solution dielectric constant,” and the solution
viscosity. 3
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APPENDIX A: ELECTROSTATIC POTENTIAL
DERIVATION WITHIN ONE-LOOP

We elaborate here on the general formalism for
calculating the electrostatic potential to one-loop order. The
action for Coulombic systems is

stol = [ ar| Zewowr + ro.in]. can

where f(¢,4;;r) includes the entropy and the fixed charge
terms, with A; being the fugacities of the ith species. By using
the one-loop expansion of I', Eq. (18), we write the equation
of state, Eq. (17) as

6S(¥) 085,(r,r’ )

oy (r) 6y (r)
where  was defined in Eq. (11). The electrostatic potential is
completely determined by this equation of state. We proceed

by expanding the fugacities and electrostatic potential, as
explained after Eq. (14),

U=yo+ Y,

+ T G(r,r'; ) =0, (A2)

(A3)
/L' = /L',() + f/li,l.

Then, by substituting Eq. (A1) into Eq. (A2), two equations
are obtained. The first is for the saddle-point potential,

& 6 /1,, r
T 1 0 Lﬁo
and the second is for the one-loop correction,
Be 6 ,AnT
7/ Ai0 (//o
azf(lﬁ7 /li7 r)
" Z oyoA; iovo il
1 Df(y, ;1)
- G —— " |A =0 (A9)

The saddle-point equation, Eq. (A4), is obtained from
the variation principle, 65/0y = 0, and gives a modified PB
equation. We use the relation between S,(r,r’) and G(r,r’)
from Eq. (13) to write ¢/, the one-loop correction of Eq. (AS),
in the form,

2 s
0ite) = [ arGinria | 3, ELUARE)

i1

EVERE
1 ’ o (93f(¢/,/l,';l'/)
760 a3 | ,owo]'

To connect these general results with the present study,
we use Egs. (20) and (A1) to get the form of (i, A;;1),

f(, ;1) = =24 cosh [ Bey(r)]
- 6(2) A (/\qe_ﬁed’(r) + )(,eﬁewr)) , (A7)

4,00

(A6)

where A = A, is the bulk fugacity and A is the surface
one. The zeroth order in the loop expansion, Eq. (A4), with
Eq. (A7), gives the PB equation for planar geometry

Yy'(z) =
8
Yo(2) = a

with a special boundary condition at z = 0,

7<0,

edo sinh (Beyo) z >0, (A%)

w
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eullily = Ealy- = —dmedo (e PV — yfUr) (A9)

To obtain the one-loop potential, we substitute Eq. (A7)
into Eq. (A6), yielding

Y(r) = Be / dr’ G(r,r’) [2/10 sinh([Beyo(r”)]

1 A
X (EﬁzezG(r', r)-— /l_(l))

_ 5(2/)/10(X+6_Bew0 _ X_eﬁekﬁo)

(s)
( BrG(r x') - 4 )]
Ao

Equations (A8)-(A10) are used in Sec. II C to calculate the
electrostatic potential.

(A10)

APPENDIX B: GREEN’S FUNCTION IN THE DH REGIME

Since we are in the DH regime, using Eqgs. (30)-(32) the
equations for g(k; z1, z2) to first order in ¥ are

8" (k;z1,22) —k°g(k; 21,22) = 0 21 <0,
” 2 4n (Bl)
8 (k;z1,22)—pglkizi,20) = ———6(z1—22) 2120,
Bew
where g’ =dg/dz, g"” =d%g/dz% and p*=k>+ KZD. The
boundary conditions for g are

w8’ (k;07,22) — £48"(k; 07, 22) = v,58(k; 0,20),
, , _ 4
g'(kiz,z1) - g'(ksz,21) = ———, (B2)
Bew

g'(kyz1 > £00,25) =0

with z; > 0, and vy, is defined in Eq. (34).
The solution for the Green’s function is then

2
glk:z1.2) = 8" [1 +£(k)] ekarpae 21 <0,
wP (B3)

2
glk;z1,20) = ,Bs_np [e*plzrzzl + g(k)e*p(zwzz)] 71 >0,

where £(k) defined in Eq. (34) is repeated here for convenience

— Ewp — Sak — Vs
1 ¢k = Ewp + Eak + 7y (B4)
¥s = s&uwkp [x+ (1= Bewry) + x— (1 + Beyy)].

2
We will use the Green’s function solution, Eq. (B3) to compute
the one-loop correction to the electrostatic potential and the

fugacities (Sec. II E), and then to calculate the one-loop ionic
densities (Sec. IIT A).

APPENDIX C: LIMITATIONS OF THE ONE-LOOP
EXPANSION

It is known that the loop expansion method has problems
close to dielectric discontinuities.>>** The small parameter in
such an expansion of the grand-partition function depends
on the system under consideration (see, e.g., Ref. 37).
The expansion validity is determined by its coupling
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parameters>®3? and is not related to the existence of a dielectric
jump.

The problem arises when one calculates microscopic
quantities, such as ionic profiles, beyond the MF approxi-
mation (zeroth-loop order), because there is no guarantee
that this is a valid expansion for these quantities. As we
will show below, the ionic densities can become negative
(i.e., nonphysical) close to the interface, when expanded
to one-loop order. This is not the case when calculating
macroscopic properties, such as the surface tension, for which
the loop-expansion validity is determined by the coupling
parameters.

Our results for the density profiles, Eqgs. (42) and (43),
are exact to one-loop order in the free-energy. Nevertheless, in
a consistent loop-expansion one should expand the exponents
in the above equations to first order in £. For example, Eq. (42)
yields

n.(z) = npe™Pevo)

ﬂZ 62

1+¢ (¢ﬁelﬁ1(2) - Gs(Z))] , (CD)
where G,(z) includes the one-loop correction to the fugacity,
as shown in Eq. (39). The problem with this expansion
is that G diverges as z = 0, G4(0) ~ A(ey, — €4)/(ew + €4)
~ 1/a — oo. This gives negative (nonphysical) densities at
small values of z and is a well-known deficiency of the
loop-expansion.?32*

The failure of the regular loop-expansion is an artifact of
the sharp dielectric jump at the air/water interface. For this
sharp jump, we do not expand the densities to first order in
¢, which amounts to perform a cumulant-expansion around a
non-zero value of the electrostatic potential.
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P = s exp |3 B GL(0)F e lpo0) + tfwl(on]
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