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Abstract

Interfaces between lamellar and disordered phases, and grain boundaries within lamellar phases,
are investigated employing a simple Landau free energy functional. The former are examined
using analytic, approximate methods in the weak segregation limit, leading to density profiles
which can extend over many wavelengths of the lamellar phase. The latter are studied numerically
and exactly. We find a change from smooth chevron configurations typical of small tilt angles
to distorted omega configurations at large tilt angles in agreement with experiment. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Lamellar phases are found in many systems, such as ferrofluids, mixtures of lipids
and water, and melts of diblock copolymers [1]. Whenever such phases occur, one
expects to observe grain boundaries between phases of different orientations. While
such boundaries have been the subject of much study in solids, there has been very
little work on their occurrence in complex fluids. The recent experimental work of Gido
and Thomas [2] and Hashimoto et al. [3] on grain boundaries in diblock copolymer
systems showed that the conformation of the boundary was a strong function of the
angle between grains. Whereas for small angles, the lamellae varied smoothly from
one orientation to the other, (a “chevron” configuration), for larger angles the lamellac
became quite distorted, sending out a piece of lamellae nearly parallel to the boundary
itself (an “omega” configuration). Finally, when the interface is parallel to the lamellae
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of one of the two adjoining phases, the lamellae became disjunct, abutting one another
in a “T-junction”. In this paper, a simple Landau free energy is shown to produce
precisely this behavior.

In addition, we consider the interface between coexisting lamellar and disordered
phases. Again such interfaces occur in many systems: those of pure diblock copolymer
melts [4], of mixtures of homopolymer and diblock [5], of lipids and water [6], of
small amphiphiles, oil and water [7], etc. The interface is studied analytically in the
weak-segregation limit i.e. in which the ordering of the lamellae can be described by
a single Fourier amplitude.

2. The model

We consider a three-dimensional system in which the ordering can be described by a
scalar order parameter ¢, and employ the dimensionless Ginzburg—Landau free energy
functional (rescaled by kgT)
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The interaction term, of strength y, induces the system to order (¢ # 0) as y increases.
That the coefficient of the gradient squared term is negative expresses the system
tendency to make this ordered phase a modulated one in which the order parameter
varies in space. The positive coefficient of the Laplacian squared term ensures that the
spatial variation does not become too large. Finally, the logarithmic entropy of mixing
terms oppose the tendency to order, preferring a state in which ¢ vanishes. Note that
the order parameter ¢ is limited to have magnitude less than or equal to unity. The
coefficients of the Laplacian squared and gradient squared terms are chosen to be +1,
respectively, setting the length scale in the problem. For convenience, we first turn to
the weak segregation limit and the interface between lamellar and disordered phases.

3. The lamellar-disorder interface in weak segregation

We assume here that the ordering is weak, i.e. that |¢| is small. In that case the
free energy functional can be expanded to fourth order in ¢. We restrict ourselves to
lamellar phases, and introduce the Fourier representation ¢(x) = > ¢pexp(ikx), with
¢r = ¢~ as the order parameter is real. In this representation the free energy per unit
volume is
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where a non-relevant constant term is omitted from F, and 4, = [1 — y — k* + k*].
The k-mode which becomes critical at the highest temperature is that for which 4; is
minimal. This occurs at k = 1/v/2 = ¢, at which A, = % — . When ¢, is small, all
other ¢4, save ¢, can be ignored as they are proportional to integer powers of ¢,.
Hence
T30 0= 5ot (34 ) by 07 ()

Minimizing this free energy with respect to ¢,¢_, = |¢,|*, one obtains

Gagb—glmin = (1 — 3 — 3). (4)

As this must be positive, it follows that in the lamellar phase, 0 < ¢3 < X7 3. A line of
continuous transitions from the disordered to lamellar phase occurs when 4)4 vanishes,
i.e. along the line

Yo =5+ 3. (5)

Upon substitution of the minimum value of the order parameter, Eq. (4), into the free
energy of Eq. (3), one finds that in the lamellar phase,
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as compared to the free energy of the disordered phase which, from Eq. (3) with
¢, =0,1s
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The line of continuous transitions ends at a tricritical point at which the free energy
of the lamellar phase Eq. (6), is no longer convex with respect to ¢y. This occurs at

1
=0+ %0 7

the point ¢ = 7, and ¥’ 2. For larger values of y and ¢y, the system undergoes
phase separation, with lamellar and disordered phases coexisting. The value of ¢ in
each, denoted ¢ and ¢J. respectively, is obtained from the conditions of the equality
of chemical potentials, g,

VooogE v ogb )
and of grand potentials G/V = F/V — u¢,
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Once ¢f is known, the amplitude of the modulation in the coexisting lamellar phase
follows from Eq. (4). We now turn to the calculation of the interfacial profile, ¢(x),
between these phases.
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Fig. 1. Interfacial profile between lamecllar and disordered phases for ¥ = 0.9 (weak segregation limit).

The interfacial free energy per unit area (and in units of k37") is the minimum of
the functional

’ 1 1
ol$p] = / dx {;F[cb] — pp(x) — 2—V(GL + G")} : (10)

where the first term F[¢]/V is just the local free energy density as appearing under
the spatial integration of Eq. (1), and G’ and G? are the lamellar and disordered bulk
grand potentials, respectively, as defined above. The Euler—Lagrange equation which
results from this minimization is to be solved for the profile subject to the boundary
conditions ¢(x)—¢5 as x—o0, and ¢(x)— Pk +2|¢,| cos(gx) as x— — oo. Rather than
solve this equation directly, we use the ansatz ¢(x) = ¢pE[1+ f(x)]/2+P5[1— f(x)]/2+
g(x)|g| cos(gx) where f(x) and g(x) approach 1 and 0, respectively as x—oc, and
—1 and 2, respectively, as x — —oc. Near the tricritical point, we can expand the
amplitudes ¢}, d§, and ¢, about the values they take at the tricritical point, % % and
0, respectively, in a power series in y — 7. Solving the equations for f(x) and g(x)
to lowest order in this small parameter, we find [8]

2e Y
g(x) = —, 11

J(x) = tanh(U) — (=1, (12)

5cosh’(U)
where U(x) = 2(3/5)"2(y — x')x. A profile for the case y = 0.9 is shown in Fig. 1.
Several lamellae participate in the interfacial region for this weak first order transition.
As the tricritical point is approached, the width of the interface, governed by the
bulk correlation length, &, will diverge, of course. In our calculation, we find the
expected mean-field scaling [9] ¢ ~ 1/(y — x'). The wavelength characterizing the
lamellar phase, however, remains at 27/q. Thus there are many oscillations of the order
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parameter within the interface as the tricritical point is approached. The evaluation of
the interfacial tension itself proceeds in a similar manner, and one obtains the scaling
o ~ (x — x')* expected within mean-field theory of tricritical points [9].

We close this section by noting that these interfacial phenomena associated with the
occurrence of a tricritical point can be observed for uniaxial lamellar systems, such
as thermotropic liquid crystal at the nematic/smectic-A transition [10]. If phases of
hexagonal symmetry are allowed, the line of critical phase transitions between disor-
dered and lamellar phases, which ends at the tricritical point, is pre-empted by a line
of first-order phase transition between disordered and hexagonal phases. Only the con-
tinuous transition at ¢ = 0 remains. Thus, the interface we have considered close to
a tricritical point exists only between metastable phases. Nonetheless, the general re-
sults we obtain should apply also to isotropic systems when there is a weak first-order
transition between disordered and lamellar phases. As noted earlier, this is the case in
many systems: pure diblock copolymers [4], copolymer mixtures [5], lipid and water
mixtures [6], and ternary mixtures of small amphiphiles, oil and water [7]. In each case,
one expects an interface in which the transition from the lamellar to the disordered
phase occurs over a length scale, £, which is quite large with respect to the wavelength
/. of the lamellar phase itself. The interfacial tension between phases, o, will be small
if the first-order transition is weak.

4. Grain boundaries in lamellar phases of complex systems

We next consider grain boundaries between lamellar phases and do so by considering
the free energy of Eq. (1). In contrast to the analytic, approximate treatment above,
in this section we minimize the free energy numerically, and exactly [11]. To do so,
we discretize space into a 200 x 200 lattice, and minimize the free energy functional
with respect to the order parameter amplitude on the 40000 lattice sites by means of
a conjugate-gradient method. Appropriate boundary conditions are imposed to bring
about a grain boundary. We set the parameter y and ¢ such that the lamellar phase is
stable. In the results below, y =1, and ¢y =0. Fig. 2a shows a symmetric tilt boundary
with an angle of 28.08° between the lamellae normals. The configuration is clearly that
denoted “chevron” in Ref. [2]. This smooth configuration remains when the tilt angle is
increased, in Fig. 2b, to () = 53.14°. However when the angle is increased to 126.86°,
as in Fig. 2c, the configuration has changed markedly to that denoted “omega” in Ref.
[2]. The change in configuration is clearly due to the fact that the spacing between
lamellae at the grain boundary itself, A/cos(6/2), is so much larger than the preferred
spacing, A. By sending out the tip observed in Fig. 2¢, the distance between regions
of the same sign of the order parameter is reduced.

As the system is brought close to the transition to the disordered phase, we observe a
pronounced reconstruction of the grain boundary in terms of a square-like modulation.
This is shown in Fig. 3 for y=0.78. The symmetric tilt-boundary free energy per
unit area, org, decreases as the transition is approached and, for ¢9 = 0, vanishes as
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Fig. 2. Order parameter profiles for symmetric tilt grain boundaries for ¢o = 0 and y = I. The order parameter
ranges from —1 to 1, and is represented by 20 grayscales. (a) 0 =28.08"; (b) 0=53.14". (c) 0=126.86".

Fig. 3. Symmetric tilt grain boundary with ¢ = 90°, and 7 = 0.78.

org ~ (1— %)3"’3 in accord with mean-field predictions. As the angle of the tilt-boundary
approaches zero, its free energy vanishes as 63; as the angle approaches 7, the energy
is expected to vanish linearly with (m — 0) in accord with a description in terms of
independent dislocations of finite creation energy.

Finally we turn to the “asymmetric” T-junction. In Fig. 4 , we show results for this
junction, again at y =1 and ¢ =0. In contrast to the chevron and omega configura-
tions, only one of the two types of domains is continuous across the interface in the
T-junction. Note the enlarged endcaps of the terminated lamellae, a feature which is
also clearly observable in experiment. We find that these endcaps become less promi-
nent as y is increased. The free energy of this junction also vanishes as (y — %)3/2
as expected in mean-field theory. More interestingly, we find that the free energy of
this boundary is much less than that brought about by inserting one wavelength of
disordered phase between the grains. Thus, the reconstruction at the boundary is a far
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Fig. 4. Asymmetric grain boundary (T-junction) between two perpendicular lamellar phases at ¢p = 0 and
¥ =1

more efficient way of making the transition from one orientation to another than that
of a grain boundary melting.

In summary, we have employed a simple Ginzburg—Landau free energy and calcu-
lated analytically, and approximately, the propertics of an interface between a lamellar
phase and a disordered one in a weak segregation limit. We have used the same free
energy to calculate numerically, and exactly, the form of the grain boundaries between
lamellar phases. The agreement with experiment is excellent. As this has been obtained
from a Landau free energy, this phenomena must result from a full mean-field calcu-
lation as well.! Finally, we are able to make additional predictions concerning the
reconstruction of these interfaces as the temperature of the system is varied. In physi-
cal systems (block copolymers and others), phases of hexagonal and cubic symmetry
are found in addition to the lamellar ones. It will be most interesting to investigate the
interfaces and grain boundaries of these phases, as we have done here for the lamellar
one.
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!'Such a calculation for diblock copolymers predicts two types of omega patterns: a symmetric one, so-called
“intermediate” in [2], and a non-symmetric omega configuration. For more details see [12].
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