First- and second-order phase transitions in Potts models:
Competing mechanisms (invited)

A. Nihat Berker® and David Andelman

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Many condensed matter systems, ranging from adsorbed surfaces to bulk magnets, are microscopically
modelled by interacting g-state Potts spins, arrayed in d dimensions. A changeover from second-order phase
transitions at q <q.(d) to first-order transitions at q>q, can be understood as a condensation of effect

vacancies, which are patches of local disorder favored by entropy. Accordingly, the renormalization-group
treatment of Potts models is within context of Potts-lattice-gas models, where critical and tricritical fixed
points occur at low g, but merge and annihilate at q.. This picture has led to exact tricritical exponents in two
dimensions. It is also consistent with recent experimental results on intercalated systems in three dimensions.
Effective vacancies in pure Potts models have also been studied by Monte Carlo simulation. Their effective
chemical potential can be controlled by a four-point interaction, which proved useful in Monte Carlo

renormalization-group studies.

PACS numbers: 64.60. — i, 75.10.Hk, 05.70.Jk, 65.50. + m

Potts modelsl are simple generalized spin
models, easily defined by the Hamiltonian

-#nr = 3L s , 48]

<ij> 5484

where, at each site i of a lattice, a spin vari-
able sj can be in one of q states {si= a, or sy =b,
etc.}. The sum in Eq. (1) is over nearest-neighbor
pairs of sites, and Gsisj = 0 (1) for sy # S5

(s = sj). Equation (1) defines the simplest form
of such models. In fact, Hamiltonians can be
written with combinations of many types of terms,
e.g., further-neighbor and/or many-site interac-
tions coupling Potts spins {si}. If the partition
function

7 = {sii}exp(—afe/m , (2)

is invariant under any permutation2 of the state
labels {a,b,...}, these systems share the so-called
universal phase transition properties, such as the
possible occurrence and critical exponents of
second-order transitions. Thus, any system in
which the energy of a spin configuration is fixed
by groups of spins being in like or unlike states,
that is without absolute but with relative refer-
ence to the labels of these states, is a Potts
system. It is therefore not surprising that many
physical systems are Potts systems. These include,
in addition to the commonly studied Ising systems
(q = 2), the q > 2 realjzations such as cubic mag-
nets in diagonal field,3 epitaxially adsorbed sys-
tems on surfaces,” structural-transition systems
under pressure,5 intercalated systems,® and multi-
component liquid mixtures.’ Formal extension to
the limir q - 1 yields results for the percolation
problem.8 The phase transition of Potts systems
involves a spontaneous' breaking of the permutation
symmetry manifest in the definition of the models:
at low temperatures, one state is preferentially
occupied by the spins.

For q > 2, Potts models admit a Landau free
energy expansion with a third-order invariant,
implying, according to classical approximations,
that the phase transition is first order. Thus,
when Baxter proved in 1973 that the latent heat
in two dimensions vanishes as q -+ 47, a qualita-
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tive shortcoming of classical theory was indicated.
The same conclusion was independently reached by
Straley and Fisher,11 whose series expansion sug-
gested a second-order transition for q = 3. On
the other hand, whereas classical theory errs on
the first-order side, modern renormalization-group
theory~“ tends to err on the side of second-order
phase transitions. This can be understood from
Fig. 1. The simplest renormalization-group flow
topology, for ordering at low temperatures, in-
volves a single flow parameter, and an unstable
fixed point at finite temperature, thereby imply-
ing a second-~order phase transition (Fig. la).
The simplest flow topology for a first-order
transition is shown in Fig. 1b. The search for
the second (elusive) flow parameter was thus the
subject of several years of renormalization-group
studies, when the Potts first- to second-order

a C
()O* < %

Fig. 1:

Simplest renormalization-group flow
topologies for (a) second-order and

(b) first-order phase transitions.

The horizontal is the temperature di-
rection. In (b), the vertical direc-
tion corresponds to an unspecified flow
parameter.
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changeover was considered one of the few short- q

comings of the generally successful renormaliza-
tion-group approach. This article will consider ZJJC) ! ? ? ? “;L' § If
the resolution of this search, which, it will be t
seen, turned out to be physically motivated and yz«» .Ti"‘~\\\\
which led to novel information. Recent results 1 y2(2)
from our Monte Carlo simulations and from inter- S .y204) -
calation experiments will also be mentioned. y °
We shall proceed now by revealing the physi- 21 ok ./ y§(3) _

cal mechanism underlying the Potts changeover.
Consider the local configuration of spins of

Fig. 2a. Under a length scale transformation
(renormalization~group transformation), these

four spins are replaced by a single spin variable
reflecting the most important collective property
of the four. In this case, the most important
collective property is clearly majority occupation

of state "a", so that the new spin variable should

also be in state "a'. Consider on the other hand
Fig. 2b. The most important collective property
of these spins is that they are thoroughly disor-
dered. They cause no ordering tendency on neigh-
boring localities. In fact, by carrying no order-
ing information, this locality effectively acts as
a vacancy. Thus, the new spin variable should be
in a new state, the vacant ("zero') state. The
pure Potts system is thermodynamically equivalent,
under length scale change, to a Potts-lattice-gas
system containing annealed vacancies, previously
introduced in the study of adsorbed systems. In
fact, this adsorption study had shown that straight-
forward renormalization-group theory does yield
first-order phase transitions for Potts models with {0) ‘—J/
vacancies. 1In the original pure Potts system, ef- - 1 ! I e —L (G=-<D)
fective vacancies such as in Fig. 2b have a high 0 1 2 3 4 5 6 7
multiplicity for large number of states q. Thus, q

effective vacancies are entropically favored for

large q. Their condensation causes the first-order Fig. 3:
phase transition, preempting criticality. Itis in-

teresting to note that the basic tenet of a renormal- lattice-gas models. (b) The extended
ization~group transformation is to project important den Nijs conjecture for exact critical
collective properties, summing out unimportant and trieritical exponents.

details. The occurrence of the Fig. 2a configura-

tion is energetically important, whereas the occur-

y5(2)

Standard
Potts
models

(a) Renormalization-group flows within
the phase transition surface of Potts-—

rence of Fig. 2b is entropically important, and The renormalization-group flows,l3_17 within
therefore must be projected as well. Furthermore, the phase transition surface of Potts models, is
we would like to stress the point of view that the shown in Fig. 3a. The flow parameter G is the
effective vacancies of Potts models are real chemical potential of the vacancies {which thus
elementary excitations of the system, independent turns out to be the mystery parameter of Fig. 1b).
of the method of treatment (only originally the Schematically speaking, the temperature direction
renormalization-group method). This will be il- can be visualized as roughly orthogonal to the
lustrated below by our Monte Carlo results. phase transition surface, i.e. out of the figure.
Pure Potts models correspond to the initial condi-

tions G = -», and, for q £ q.» their transition

( b) points renormalize to the critical fixed line CM.
For q > qc, such flows miss CM, and renormalize to
the first-order fixed line 2Y. The line RM is a
tricritical fixed line. The Potts changeover occurs
by the merger and annihilation of the tricritical
and critical fixed lines. Further, previously to
the introduction of the effective vacancy mechan-
ism, den Nijs had conjectured a formula for the
exact cnitical exponents v = y3' of Potts models in
two dimensions. This is curve y5(0)y,(4) in Fig.
3b, given by

(a)

o a O
0o a Q
0o a
Q o Q
- o
- O O

(y, -3 = 3/(yB-2) ,

where (3)

C] O vg = (2/mycos™ (/ql2)

is the critical exponent of the Baxter model at the
map10 of the transition point of the {q < 4)-state
Potts model. The effective vacancy mechanism
having revealed the tricritical fixed line as a
smooth continuation of the critical fixed line, it
was noted that Eq. (3) is double_valued, the upper
branch thus giving a conjecture for the gxact

Fig. 2: Renormalization-group mapping of (a)
ordered and (b) effective-vacancy
localities.
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tlenitical exponents of Potts models in two di-
mensions [y§(0)y,(4) in Fig. 3b]. Subsequently,
such conjectures have been extended to other expo-
nents,19 and, furthermore, the extended den Nijs
conjecture has been derived.

The role of effective vacancies can be noted,
visually, from snapshots of Monte Carlo simulations
on Potts models which are formally pure (no mani-
fest vacancies). In Figs. 4, we present examples
from two spatial dimensions. Figure 4a is a snap-
shot from a q = 3 system, 207 above the infinite
system transition temperature. Adjacent sites,
numbering at least twelve, and which are in the
same state, have been indicated. The remainder of
the system can be considered populated by effec—
tive vacancies. Note the large non-vacancy
regions, each aligned to one spin state. Such
regions have long boundaries of mutual contact,
the corresponding interfacial free energy presum-
ably having gone to zero, a signal for a second-
order phase transition. By contrast, in Fig. 4b
for q = 20, the system is overtaken by a "conden-
sation" of effective vacancies. Nonetheless, a
quasi-second-order behavior can be induced even
for ¢ = 20 (>>q. = 4), by introducing a new inter-
action between Potts spins, which disfavors effec-
tive vacancies, as discussed below. The resulting

Fig. 4c should be compared with Fig. 4a.
The choice of such appropriate new interac-
tion is dictated by the desire to disfavor effec-

tive vacancies, the mechanism for the first-order

phase transition, without simultaneously disfavor-
ing interfaces between locally ordered regions, the
mechanjism for a second-order transition. One
choice is a four-site term which is non-zero (and
unfavorably energetic) only when all four bonds in
an elementary square connect unlike states. The
corresponding term in the Hamiltonian - #/xT 1is

F I

) (l_(S ) >
<ijke> 251

(1-8g ) (184 ) (1-6
i%5 Pk sSy
k )

F<O

Alternatively, F could be made positive, to favor
effective vacancies, still without introducing mani-
fest vacancies. Thus, using a pure Potts q = &4
system and varying F, the fixed point M of Fig. 3
was probed in a Monte Carlo renormalization-group
study, to obtain quantitatively the special proper-
ties of this changeover point. Quantitatively
improved results for q = 3 have also been obtained
similarly. Most recently, the use of similar
interactions have yielded novel phenomena as well
as high accuracy for the XY spin models in two and
three dimensions.

Finally, it should be noted that even when the
critical fixed line CM (Fig. 3) is missed by the
renormalization-group flow for g somewhat greater
than q,, the presence of the fixed line at q < q.
is felt. This is because, by the analytic nature of
renormalization-group transformations, flows to the
left of M slow down about the G value of M, that is
to say, a given length rescaling causes a smaller
change in the value of G. Many renormalization-
group iterations in this neighborhood cause the
accumulation of pseudo-critical "singularities" in
the statistical properties of the system. This is
presumably what happens in stage-one lithium inter-
calated in graphite®® which is a realization of
q = 3, since in three dimensions q. is believed
to be between 2 and 3.
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Fig.

1.

I

4: Monte Carlo snapshots of finite, pure
Potts systems[Eqs. (1) and (4)] with
periodic boundary conditions, taken
after 1,500 Monte Carlo steps per site.
Shaded are groups of twelve or more ad-
jacent sites in the same state. The
boundary of each group is shown with dark
lines. The remainder of the system can
be considered occupied by effective
vacancies. (a) q =3, F=0, 12x12
system, 20%Z above the infinite system
transition temperature; (b) q = 20, F=0,
16 x 16 system, 10% above the infinite
system transition temperature; (c) q= 20,
F=5J, 12x 12 system, 25% above the
infinite (F = 0) system transition
temperature.
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