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It is shown that the matrix obtained from the infinite order discrete variable representation (DVR) 
of a scattering problem has the structure of a Toeplitz matrix. The resulting properties can be used 
to reduce the associated infinite system of algebraic equations to a &rite (and relatively small) one. 
An example is worked out to show the efficiency of the combined Toeplitz DVR approach. 

I. INTRODUCTION 

Recently, the application of. finite-range square- 
integrable (L’) functions has become one of the more popu- 
lar methods of handling multiarrangement scattering 
processes. I-’ The expansion of the wave function in terms of 
L2 functions enables one to convert the Schrodinger equation 
(SE) into a set of algebraic equations, whose numerical so- 
lution has many advantages over the propagative methods 
originally used to solve the differentia1 SE. However, em- 
ploying L2 functions for scattering problems cannot be done 
in a straightforward way, as for a bound-state problem, since 
scattering states are, in nature, extended states, and therefore 
an injhite number of finite-range functions is needed, gener- 
ally, to expand these states. 

Several approaches were suggested in recent years to 
overcome this difficulty. The most common one is making 
use of the explicit asymptotic form of the wave function, and 
carrying out some kind of matching these asymptotes to the 
wave function in the interaction region, which, in turn, can 
be expanded in terms of the localized L2 functions.’ Another 
approach is based on applying negative imaginary potentials 
(NIP), which absorb the wave function in the asymptotic 
region and in the same time do not cause any reflection to the 
interaction region. This unaffected part of the wave function 
is again solved using L” basis sets.’ A third method which 
was considered most recently involves expanding the wave 
function in terms of an infinite set of localized Gaussians.3 It 
has been shown that the matrix related to the resulting set of 
algebraic equations, though infinite, has (m the asymptotic 
regime) the structure of a Toeplitz matrix. Using the analyti- 
cal properties of the Toeplitz matrix the infinite set of equa- 
tions is reduced to a finite (not too large) one. This method 
was studied and was found to be more efficient, at least for a 
one-dimensional reactive problem, than the NIP approach.” 

One of the L2 basis methods, which attracts more and 
more attention in recent years, is the discrete variable repre- 
sentation (DVR) method, which was pioneered in the last 
decade by Light and co-worker? (although its origin goes 
back to the 19608) for use in vibrational eigenvalue calcu- 
lations. Applying the DVR formalism, no integration is 
needed to form the relevant matrix elements, and in addition, 
the matrix is (for more than one-dimensional problems) ex- 
tremely sparse. Thus many of the numerical problems which 
can be treated by the L2 methods are solved in this approach. 

However, the extension to scattering problems has to 

solve the problem discussed in the preceding paragraphs, 
namely the infinite number of basis elements which are re- 
quired to span the extended scattering states. Light and co- 
workers used a somewhat arbitrary truncation of the Hilbert 
space to the subspace spanned by the first n states of the L” 
basis set.5(b)P5’d) Colbert and Miller showed that the DVR 9 
method can be derived by replacing the differential operators 
by their finite-differences approximations and used an energy 
cut-off criterion to obtain a spatial truncation of the grid. 
This method was used to calculate the S matrix via the Kohn 
variational principle.7 A more recent development in this di- 
rection was the application of NIPS which provides a more 
systematic way of getting a finite system out of the DVR 
method.’ 

In this work, we wish to show that the DVR method can 
be converted into a finite system exactly, i.e., without any 
truncations or absorbing boundary conditions, via the 
Toeplitz method.’ This new approach therefore has the ad- 
vantages of both methods; on the one hand, no integration is 
needed and the general structure of the matrix is almost the 
same as in usual DVR treatment, while at the same time, the 
reduction of the problem to a finite matrix is done rigorously 
with no need in any assumptions or approximations. 

II. THEORY 

In the following we present the theory for a one- 
dimensional reactive scattering problem. The generalization 
to more realistic (three-dimensional, atom plus diatom) sys- 
tems will be discussed elsewhere. The positive part of the 
real axis will be termed as the h arrangement channel (AC), 
and the negative part as the v AC. 

The relevant SE is 

W-H)@,,=% (1) 
where E is the energy, H is the full Hamiltonian, and & is 
the complete wave function calculated for an asymptotic 
boundary condition at the v AC. In order to solve this equa- 
tion we apply the perturbative approach.2*0 We define two 
(nonreactive) unperturbed potentials W,J(Y=X,V) such that 
the scattering potential U approaches W, at the asymptote of 
the a AC, and solve by some propagative method the two 
unperturbed SEs: 

(E-Ho,)~oa=O; a=X,v, 

where 

3802 J. Chem. Phys. 101 (5), 1 September 1994 0021-9606/94/l 01(5)/3802/4/$6.00 Q 1994 American institute of Physics 

Downloaded 03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Hoa=H- U+ W,; a=x,v. (3) 

Now writing & as 

A= ~oo,+xv9 (4) 

one obtains the inhomogeneous equation for xv: 

(E-Wxv= V,+o, 9 (5) 

where V, is defined by 

V,=H-Ho,=U-W,. (6) 

Once xv is solved, the “reactive” S-matrix element (i.e., the 
transmission coefficient) is obtained from the asymptotic be- 
havior of the wave function 

h=S(v4X)exp(ikhx), (7) 

where kx is given in the form 

Eisenberg, Ron, and Baer: Toeplitz matrices for scattering problems 3803 

We wish to show now that the infinite algebraic system 
can be reduced analytically to an equivalent finite system, 
which, in turn, can be solved numerically. We first consider 
the X AC where x-+w. Since the potentials U(X) and 
V(x) approach a constant Uc after some finite range, there 
exists an m. such that once m>mo, 
A,,=(E-Uo)6,,--T,,=~(rn-n), and the inhomoge- 
neous term of Eq. (10) vanishes. Consequently, for m>mo 
the equations have the form 

co m 

2 A,,,-jxm-j=(E-Uo)Xm- C tjX,-j=O. 
jr--m j=-co 

(15) 
Since the equations are the same for each m>mo, we seek 
for solutions which are the same up to a constant, i.e., 
xm .+ r = /3x,, and therefore 

kx= J 
w 
p (E- Uo>. 

Here ,u is the reduced mass and U. is the asymptotic value of 
the potential at x-+m (in the v AC). 

For our one-dimensional system, H is given in the form 

h2 d2 
H= -- 7 + U(x), 2p dx- (9) 

and consequently Eq. (1) becomes 

’ “‘o+J Y .=pjj&,. (16) 

We find below two independent solutions of this form, cor- 
responding to incoming and outgoing waves, and therefore 
these (and superposition of them) are the only solutions. 
Since the solutions must not be asymptotically increasing nor 
asymptotically decreasing, ,B has to be of the form 

P=exp(iB). (17) 

Substituting Eqs. (16) and (17) in Eq. (15) yields the equa- 
tion for S, 

(10) m 
E-Uo-to-2 C COS(Bj)tj=O. (18) 

jz --m 

The sum on the right-hand side can be done analytically” 
using the expression for tj ,  

2,uo%+ (Jo) 

A2 
- rr2/3 - 5 4 cos( t9j) * 

je--m 
k 

We now wish to transform the differential equation (10) to a 
set of coupled linear equations. This is done using equally 
spaced grid points x,, = n (+, and replacing the derivative term 
in Eq. (10) by its infinite order grid point representation:7 

1 
f”b,J = -2 

i 
f(%J rr2/3 

(-l)k 
+25 Lf~&+k)+f~-%-k)l -p-- 

k=l 1. 
~P&E- uo> = (11) ii2 - @=o, 

and therefore we fmd for 6 
Equation (16) therefore gets the DVR form 

C AijXj=G (Eaij-Tij- Uij)xj=V(x~)+~Jx~)~ 
i j 

where 
(12) 

Tij’ 

fiZ,(- l)‘-j-’ 7T2/; j ,  i=j 

7 

2/m- 

1 - 

(i_j)2, iZj' 
(13) 

and the potential energy matrix is (as usual in DVR treat- 
ments) diagonal, 

Uij’ SijU(Xi) * (14) 
Note that the kinetic term Tij is a Toeplitz matrix, i.e., it has 
the form Tir = tk where k = i -j; this property is crucial for 
the following derivation? 

cw 

where kx was defined in Eq. (8). We thus have expressed all 
the coefficients x,,, (m>mo) in terms of xmo: 

xn=xmo exp[i~h(n-m>l, n>mo. (21) 

In fact, Eq. (19) has two independent solutions, which follow 
from different sign choices for 0. As mentioned above, this 
ensures us that all the solutions may be obtained through the 
form of Eq. (16). In the following the positive sign is used, in 
order to impose outgoing wave boundary conditions. 

A similar treatment is applied to the v asymptote where 
x+-a, and one can express xn (n<no) in terms of xno, 

xn=xno exp[ih(n--ndl, n<no, (22) 

where k, is the wave number associated with the energy E. 
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We now consider Eq. (10) for n,,=~m~ma. These equa- 
tions can now be greatly simplified by substituting the pre- 
vious expressions (16) and (17), and one therefore obtains 
the following jinit~ system: 

m0 

C iijXj=V(Xj>cjloJXf>, i=no,...,mo, 
j-no 

where 

(23 

g Ai,,,,-l exp(-i&Z), j=~ 
l=O 

iii= Aif, no<j<mo (24) m 

C Ai,mo+l exp(idkZj, j=m, 
I=0 

The transmission is then given by the asymptotic behavior of 
,y [see Eq. (7)]: 

I-= Ic++AjI’= Ix,012, (25) 

which can also be expressed as 

T= 2 (~-'),~,jvCxj)~o,(xi) 

2 

’ (26) 
j=no 

III. NUMERICAL TEST 

We have taken a preliminary numerical test of the above 
described method in order to check its validity. A more de- 
tailed study will be presented elsewhere. The numerical work 
is carried out for an Fckart potential:t2 

FIG. 1. Transmission probabilities for the Eckart potential. The solid line 
refers to the exact results of E?.q. 05), while the circles correspond to the 
numerical results. 

Figure 2 examines the convergence rate of the reactive 
probability with respect to the grid points density. The rela- 
tive error is plotted for three different energies as a function 
of the number of grid points per wavelength. The energies 
were chosen to cover the whole range of interest: the high 
energy is far above the threshold, i.e., E=0.76 eV (P 
= l.OOO), the intermediate energy is equal to the energy bar- 
rier, i.e., E=0.425 eV (P=O.501), and the third energy was 
taken to be in the deep tunneling regime, namely E =O.4 eV 
(P=O.O17). As one can clearly see, an excellent convergence 
is attained already for N-2.5 (for which the relative error is 
about 0.1%). 

(27) 

where y =exp( 2 ~-x/l). The exact reactive (transmission) 
probability is given in the form” 

cosh[:!rr(a-P)]+J? 
P=1-cos~27r(n+p)]+r ’ 

where 

1 /El2 

These results can be compared with those of Seideman 
and Miller (SM)* [ w h o used the DVR approach combined 
with negative imaginary potentials (NIPS)]. SM achieved this 
kind of accuracy for a similar potential only for Na3.5. 
(In both cases the interaction region was taken 
-1OAGxG 1 OA.) It is important to mention that in this 
respect the accuracy of SM was so far the highest. We at- 
tribute our achievement to the analytic treatment of the set- i 
ond derivative in the asymptotic region. Whereas in the SM 

(28) 

(29) I 
0.8 I 

(301 0.5 I 2 
1.0 , I -I--( 

r=cosh(2&), (32) 

1 3-c l’* 
s=2 - ( 1 c . (33) 

In the present application we assumed p=llfi; A=O; 
B= 1.7 e:V, 1=27r A. Figure 1 presents the comparison be- 
tween the exact results and the results obtained from the 
Toeplitz version of the DVR. The number of grid points per 
wavelength taken, which we denote N, was N=2.5. 

-0.5 

4.8 

-1 .o I...!- -A1 
20 3.0 4.0 

DVR POINTS PER WAVELENGTH 

FIG. 2. Relative error in transmission probability for three different energies 
as a function of the grid points density. 
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case the expansion is stopped at some (large) x value and the 
asymptotes are taken care by the NIPS, we never really stop, 
and in this sense our treatment goes ad in.nitum. The reduc- 
tion to a finite case is done rigorously taking into account the 
features of the Toeplitz matrix which were recently applied 
by us in other scattering problems.3 

IV. CONCLUSIONS 

In this work, a new approach for treating scattering pro- 
cesses by the DVR method is described. The problem of. 
dealing with an infinite number of equations, which follow 
from the usage of L2 functions, is solved in a rigorous way 
using the features of Toeplitz matrices. It is shown that all 
the wave function values at the asymptotic regions (where 
the potentials vanish) are connected to its values at the 
boundary of these regions, and thus one obtains a linear sys- 
tern of equations whose variables are the values of the wave 
function in the interaction region only. We thus presented an 
exact, but still finite, set of equations whose solution is 
equivalent to the exact solution of the original SE. Applica- 
tion of this method for a one-dimensional reactive system 
yields very accurate results, with an extremely sparse grid. 
This method is now extended to realistic three-atom reactive 
systems. 
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