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Abstract
The decay of directional correlations in self-avoiding random walks on the
square lattice is investigated. Analysis of exact enumerations and Monte Carlo
data suggest that the correlation between the directions of the first step and
the jth step of the walk decays faster than j−1, indicating that the persistence
length of the walk is finite.

PACS numbers: 05.40.Fb, 05.10.Ln, 05.50.+q

The main characteristic of a self-avoiding random walk (SAW) is the infinite memory of the
walk, resulting from the excluded volume constraint. This property raises the question whether
an initial bias persists along the entire walk, and affects the distribution of the end points. This
problem was first considered by Grassberger [1], who investigated the dependence of the
persistence length on the number of steps of two-dimensional SAWs. The persistence length
of an SAW 〈xn〉, is defined as the average displacement of the end point, of an n-step walk,
along the direction of the first step. Without loss of generality, we fix the origin at the starting
point of the SAW, and choose the first step to be oriented in the positive x direction. Based on
exact enumerations of SAWs on several two-dimensional lattices, Grassberger [1] studied the
n dependence of the persistence length, and concluded that the persistence length diverges like
〈xn〉 ≈ nw , with w = 0.063(10) (the figure in parentheses indicates the uncertainty of the last
digit). On the other hand, Redner and Privman [2] suggested, based on exact enumeration and
Monte Carlo (MC) data, that the divergence is logarithmic in n. Later scanning MC studies
[3–5] found that the persistence length data could be fitted equally well by a power law and
by a logarithmic function.

In this letter we revisit this problem, and show that the persistence length of a two-
dimensional SAW does not diverge, neither as a power law nor logarithmically, but rather
converges to a constant.

It is very difficult to determine numerically whether a quantity converges to a constant
or diverges logarithmically. Therefore in this letter we prefer to investigate the persistency

0305-4470/03/080121+04$30.00 © 2003 IOP Publishing Ltd Printed in the UK L121

http://stacks.iop.org/ja/36/L121


L122 Letter to the Editor

problem by analysing the decay rate of the angular correlation function c1,j (n) between the
directions of the first step and the jth step (monomer) of a n-step SAW on the square lattice.

c1,j (n) =
∑cn

k=1 cos(ϑ1,j (k))

cn

(1)

the index k in equation (1) runs over the cn different n-step SAWs, and θ1,j (k) is the angle
between the directions of the first step and the jth step of that walk. The possible values of
the cosines are determined by the symmetry of the lattice. On the square lattice their possible
values are: 1 (parallel), 0 (perpendicular) and –1 (anti parallel). Thus c1,j (n) describes the
average x component of the jth step of the walk, and the persistence length is given by
summation over j of the angular correlations [6]:

〈xn〉 =
n∑

j=1

c1,j (n). (2)

For a pure random walk c1,j (n) = δ1,j for all n, and 〈xn〉 = 1. For a random walk with
correlations between successive steps only, c1,j (n) decreases exponentially with j independent
of n, and 〈xn〉 converges to a constant. For a SAW one expects c1,j (n) ≈ j−δ for n � j.
The asymptotic behaviour of 〈xn〉 depends on the magnitude of the power δ, for δ > 1 the
persistence length converges to a constant, for δ = 1 it diverges logarithmically, while for
δ < 1 it diverges like a power law w = 1 − δ. Note that the decrease in c1,j (n) is much faster
than that of angular correlation between two steps in the interior of a long SAW, which decays
like: ci,j (n) ≈ (j − i)−

1
2 , where 1 � i < j � n (see, e.g. [1])

We start by giving some arguments about the relevant walks, and their weights. Consider
a walk {p} which starts with a step along the +x direction followed by a kink at the second
step (i.e. the second step is in the ±y direction—going from the site (1, 0) to (1, 1) or to
(1, −1)), which does not visit the site (2, 0). Its conjugate walk {q}, defined as a reflection of
{p} about the kink, is a valid SAW, which obeys for all j > 1 cos(θ1,j (p)) = − cos(θ1,j (q)). As
a result the net contribution to c1,j (n) from these walks vanishes. A non-vanishing contribution
from walks with a kink at (1, 0) is obtained only for walks that return during the walk to the
vicinity of the kink, by visiting the site (2, 0). The fraction of SAWs with a kink at (1, 0) is
approximately 0.652, and their return probability to (2, 0) decays like k−59/32 [7, 8], where k
is the length of the returning loop. If the (2, 0) site is visited early in the walk, resulting in
a loop whose length k is small compared to j, and no other returns to the origin occur, then,
in most cases, the contribution of this walk to the persistence is cancelled by another walk,
which is its reflection about the first y direction step after visiting (2, 0).

Similar arguments apply to walks with a first kink at (m, 0). Walks with a kink at (2, 0),
for instance, contribute to c1,j (n) ( j > 2) only if they return during the walk to the site (3, 0)
or to the site (4, 0). The fraction of walks with a first kink at (m, 0) decreases like 2/3m,while
the number of the asymmetric sites increases like m. Therefore their contribution to c1,j (n)

cannot exceed the contribution of the m = 1 walks.
These considerations are utilized in the following numerical procedures.
We enumerated on the square lattice all the angular correlations c1,j (n) up to n = 30. In

addition we extended the range of n by computing c1,j (n) using the pivot algorithm version of
the MC method [9], for n = 50, 70, 100, 200. The MC statistics scanned O(1011) iterations,
which were grouped into ∼10 K groups of ∼10 M realizations each, for the purpose of
calculating the statistical error. For n = 200 the absolute error in the MC data is about 5.0d-6,
for j = 40 the relative error is ∼0.1%, while for j = 100 it is ∼0.3%.

Figure 1 shows c1,j (n) as a function of 1/n for representative j values: j = 9, 11, 13, 19.
Up to n = 30 the data obtained by enumerations, and for higher n values by the MC method.
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Figure 1. Angular correlation functions c1,j (n) as a function of 1/n, for j = 9, 11, 13, 19.
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Figure 2. Angular correlation functions c1,j (n) as a function of j, for n = 50, 70, 100, 200.

For a given j the angular correlation function increases monotonically with n (disregard odd
even effects) up to n ∼ 2j . Then it converges linearly in 1/n, with a positive slope, towards
its asymptotic value c1,j . As a result of the abnormally long finite size effect, it is very difficult
to deduce meaningful conclusions about the asymptotic region from the enumeration data.

Figure 2 shows the MC data as a function of j. The main feature is the dramatic collapse
of the c1,j (n) values for j > n/2. For lower j values the MC data fit the j−1.27 form quite well.
We estimated the asymptotic values c1,j by two linear extrapolations. The first extrapolation
uses the n = 100 and n = 200 MC data to obtain, up to j = 40, the asymptotic set c1,j (I ):

c1,j (I ) = 1
100 [200c1,j (200) − 100c1,j (100)] (3)
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(for j > 40 c1,j (100) is out of the asymptotic region). A second estimation of the asymptotic
values c1,j (II), up to j = 28, obtained from the n = 200 and n = 70 MC data. To reduce odd
even effects we define a modified correlation function c′

1,j , given by

c′
1,j = 1

4 [c1,j−1 + c1,j+1 + 2c1,j ] (4)

We best fitted independently the two sets and find the expressions:

c′
1,j (I ) = 0.589j−1.342 (4a)

c′
1,j (II) = 0.608j−1.354. (4b)

On the basis of these results a conservative estimation of the exponent is

δ = 1.34(5). (5)

Thus we conclude that the persistence length of a two-dimensional SAW converges to a
constant.

The number of n-step SAWs on a lattice is cn ≈ µnnγ−1 where µ is the effective
coordination number of the walk (connective constant), and the critical exponent γ is a lattice
independent critical exponent. For two-dimensional SAWs the value 43/32 = 1.34375 was
obtained by Nienhuis [8] for the exponent. This exact value of γ is surprisingly similar to our
estimate of δ in equation (5), but we do not find any argument to support this connection.

Finally, we note that the persistence length of a two-dimensional random walk which
starts at the origin and has an excluded site (trap) at (−1, 0), diverges logarithmically in n [10].
The divergence results from the fact that the probability to return to the origin after j steps
decreases as 1/ j, and whenever such event occurs the +x direction is preferred. It seems that
this problem is analogous to the persistency problem for SAW, and one would expect a similar
divergence of the persistence length. However, as explained above, the SAW probability to
return to the origin is substantially smaller. As a result the bias at the origin affects a smaller
fraction of the walks, and it does not reflect itself in a divergence of the persistence length.
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