
Phase relaxation of one-particle states in closed quantum dots

K. Held a,b, E. Eisenberg a,b, B.L. Altshuler a,b,*

a Physics Department, Princeton University, Princeton, NJ 08544, USA
b NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA

Abstract

We develop an analytical approach to analyze the effect of dephasing of one-particle states on the magnetocon-

ductance of closed quantum dots. This approach allows us to extract dephasing rates from experimental measurements

of the magnetoconductance. The dephasing rates calculated depend on the mean level spacing and are much longer than

in open quantum dots. The limited experimental data available are consistent with the theoretical prediction of di-

verging dephasing times in finite closed systems at sufficiently low temperatures. We also consider fluctuations of the

single-electron spectrum, and observe a significant effect on the conductance distribution and magnetoconductance of

closed quantum dots at experimentally relevant temperatures.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of electron phase coherence in mesoscopic structures has attracted much interest recently. In the absence

of external radiation and at low temperatures, the loss of phase coherence, or dephasing, of the quasiparticles is due to

electron–electron interactions. Thus, understanding the nature of low temperatures dephasing provides us a test to our

description of the many-body nature of the electrons ground state. More recently, the possibility of using quantum dots

as qubits has raised an additional interest in this topic. Important in this respect is the prediction of a vanishing

dephasing rate in isolated quantum dots [1].

In a clean Fermi liquid the electron–electron interaction results in dephasing of the quasiparticles. Using the Fermi

golden rule, the rate can be estimated to be ��2=EF, where � is the quasiparticle energy and EF is the Fermi energy. The
effect of disorder can be incorporated, and leads to a decrease of the dephasing rate. However, when the mean level

spacing, D, becomes large, the Fermi golden rule approach breaks down, as the density of states becomes too low
(compared to the average matrix element). It was shown that the golden rule estimates are valid only for � > D

ffiffiffiffiffi
gT

p
,

where gT is the dimensionless Thouless conductance of the system. At much lower energies, where the typical matrix
elements are much smaller than D, the quasiparticle states do not decay, they are just slightly perturbed by the electron–
electron interaction. Using a mapping onto a localization model, it was shown that there is a sharp transition between

these two limits, as a result of localization of the wave-function in Fock space. Thus, one expects to find the dephasing

rate to vanish at some finite temperature, which scales like [1] D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gT= ln gT

p
. As mentioned above, this result, namely the

possibility of a vanishing dephasing rate at finite temperatures, is of great importance to the quantum computing

community. However, it was claimed that the logarithmic correction, and maybe even the existence of the transition are

artifacts of various approximations done in the process of mapping the many-body Hamiltonian onto the localization

problem [2]. Thus, an experimental verification of this localization transition, through measurements of the dephasing

rate in closed (i.e., nearly isolated) quantum dots, is desirable.
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Quantum dots which contain a larger number of electronsN, Oð103Þ or more, are usually described statistically. In
particular, the low-energy universal statistical fluctuations of diffusive quantum dots or quantum dots with irregular

shapes whose associated classical dynamics are chaotic can be described by random matrix theory (RMT), which

becomes exact in the limit 1=gT ! 0 (gT /
ffiffiffiffiffiffi
N

p
). Within the RMT approach, the one-particle eigenvectors as well as the

dot–lead coupling are statistically distributed whereas the Coulomb interaction is independent of the levels involved.

Thus, to leading order in 1=gT , the charging term (Coulomb repulsion) and the exchange interaction depend only on the
total charge and spin, respectively [3,4]. The solution of the RMT model by means of the master or rate equation

successfully described the mesoscopic fluctuations of the Coulomb blockade peaks in closed quantum dots, i.e., the

statistical distribution of their height P ðGmaxÞ and its dependence upon magnetic field [5]. On the other hand, recent
experiments unambiguously show deviations from this RMT prediction, suggesting that interaction effects beyond

charging should be considered as well. In particular, dephasing of the one-particle states due to interactions modifies the

conductance peak height statistics (see [3,4] and references therein). Whereas there is a number of ways to measure the

dephasing times in open quantum dots [6,7], the situation is much more complicated in closed dots.

Only a few experiments have attempted to study dephasing in closed quantum dots. Most of these have focused on

the relaxation of highly excited states [8], verifying the continuous to discrete spectrum transition at � / gD. Some
signatures of dephasing in thermalized states have been studied by Patel et al. [9], who analyzed the statistical distri-

bution of the conductance maxima Gmax (the height of the Coulomb blockade peaks). They found that the ratio of
standard deviation to mean peak height rðGmaxÞ=hGmaxi is smaller than what RMT predicts [10], and attributed this
reduction to dephasing effects. More recently, Folk et al. [11] suggested to use the dependence of the conductance upon

applying a magnetic field B,

a ¼
hGmaxiB6¼0 � hGmaxiB¼0

hGmaxiB6¼0
; ð1Þ

as a probe of the dephasing. This is the closed dot analog of the weak localization magnetoconductance which was

analyzed earlier for open dots [6]. Folk et al. found considerable deviations of a from 1/4 which is considered to be an
indication for dephasing or inelastic scattering. In a first theoretical work, Beenakker et al. [12] considered the limit of

strong inelastic scattering, i.e., the limit where the inelastic relaxation rate Cin far exceeds the mean tunneling rate or
inverse dwell time in the dot C. In this limit, a is reduced much stronger than what was found experimentally. Thus,
Beenakker et al. [12] concluded that Cin < C in the experiment [11]. More recently, Rupp et al. [13] studied the ratio of
standard deviations

c ¼
rðGmaxÞB6¼0 � rðGmaxÞB¼0

rðGmaxÞB6¼0
ð2Þ

in the limit of strong inelastic scattering and suggested to use this quantity as an indicator for dephasing.

We discuss here in detail two effects that lead to a suppression of a below 1/4: While phase-breaking inelastic
scattering processes can lead to the large suppression of a observed experimentally at high temperature [14], RMT
fluctuations of the one-particle eigenfunctions lead to a non-negligible effect at lower temperatures [15].

The paper is organized as follows. In Section 2, we extend the master equation approach of Beenakker [16] to take

into account phase-breaking inelastic scattering. In Section 3, we develop an analytical approach which is valid at high

temperatures and allows us to evaluate a (Eq. (1)). This analytical approach is validated by comparing to the numerical
solution. In Section 4, the closed-dot dephasing times extracted from the experimental values of a [11] are presented: We
observe a clear enhancement of the dephasing times relative to earlier results for open quantum dots [6]. Moreover,

contrary to the analysis of open quantum dots [6] which showed a dependence on temperature alone, we find a de-

pendence on both T and D, not inconsistent with vanishing dephasing rates for low excitation energies [1]. Finally, in
Section 5 the effect of RMT eigenlevel fluctuations on a is discussed.

2. Model

Within the RMT approach, the one-particle eigenlevels of the quantum dot Ei are Wigner-Dyson distributed, de-

pending on the absence or presence of a magnetic field in the Gaussian orthogonal (GOE) or unitary ensemble (GUE),

respectively. As we are interested in the Coulomb blockade regime, the number of electrons in the quantum dot is

restricted to N and N þ 1. The Coulomb interaction is described by a constant charging energy which is different for N
and N þ 1 electrons. Each state of the quantum dot is, thus, determined by a tuple fnig of occupation numbers for the
one-particle eigenstates with energies Ei and spins Si. Neglecting higher order processes in the tunneling rates, the
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probability PNðfnigÞ to find the tuple fnig with N 2 fN ;N þ 1g electron can be described by the following master
equation which includes the tunneling rate between dot and lead [16] as well as inelastic scattering processes

dPN ðfnigÞ
dt

¼
X
jk

dnj0C
k
j ½ð1� f k

j ÞPNþ1ðfnigþjÞ � f k
j PN ðfnigÞ� þ

X
jk

dnj0dnk1 Cjk
inPN ðfnigþj�kÞ

h
� Ckj

inPN ðfnigÞ
i
;

dPNþ1ðfnigÞ
dt

¼
X
jk

dnj1C
k
j ½f k

j PN ðfnig�jÞ � ð1� f k
j ÞPNþ1ðfnigÞ� þ

X
jk

dnj1dnk0 Ckj
inPNþ1ðfnig�jþkÞ

h
� Cjk

inPNþ1ðfnigÞ
i
:

ð3Þ

Here, fnigþj (fnig�j) are the tuples obtained from fnig by adding (removing) one electron in the one-particle eigenstate j.
The leads are thermalized and distributed according to the Fermi function f k

j ¼ fFDðEj þ ðdkL � 1=2ÞeV � lÞ, where
k 2 fL;Rg, V denote the applied voltage, and l is the effective chemical potential, including the charging energy. The
first terms in (3) describe the tunneling of electrons between the dot eigenlevels j and the two leads with rates Ck

j . Within

RMT, the distribution of these rates is given by the Porter-Thomas distribution

PbðCÞ ¼
C
2hCi

� �b=2�1 hCib=2�1

Gðb=2Þ exp½�bC=ð2hCiÞ�: ð4Þ

Here, hCi is the mean-value of the distribution and G the Gamma function. The difference between P1ðrÞ and P2ðrÞ leads
to the afore mentioned value a ¼ 1=4 in the absence of inelastic scattering [17]. The inelastic scattering from a level j to
another level k with rate Cjk

in is described by the last terms of Eq. (3). The analytic approximation which we develop in

Section 3.2 depends only on the total inelastic scattering rate Cin, and therefore the details of the inelastic scattering
model are not important. For the purpose of the numerical calculations to follow, we assume the following model for

the scattering rates (xjk ¼ Ek � Ej)

Cjk
in ¼ C0in

sgnðxjkÞDðjxjkjÞ
exp½xjk=ðkBT Þ� � 1

dSjSk : ð5Þ

This inelastic scattering rate can be caused by thermal bosonic fluctuations at temperature T with density of states DðEÞ.
But it is even more general, it only assumes detailed balance, no back-coupling of the scattering to the Bose bath, and

spin-independence. The microscopic mechanism might be due to external noise, electron–electron, or electron–phonon

interaction. An important point w.r.t. Eq. (5) is that the suppression of a is quite robust to the specific model of in-
teraction, and depends mainly on the total inelastic scattering rate Cin, as will be shown below. We consider Cin as a free
(phenomenological) parameter which can be determined from the experiment.

From the stationary solution of the master equation (3), i.e., dPNðfnigÞ=dt ¼ 0, the current I can be calculated via
the tunneling processes between left lead and dot

I ¼ �e
X
fnig

X
j

dnj0C
L
j ½fjPN ðfnigÞ � ð1� fjÞPNþ1ðfnigþjÞ� ð6Þ

and from I the conductance G ¼ dI=dV .

3. Analytical approaches

To calculate the conductance, we linearize the master equation w.r.t. the applied potential V, i.e., f k
j ¼ fj þ

ðdkL � 1
2
ÞeV dfj=dEj, and expand PNðfnigÞ up to first order in the voltage

PNðfnigÞ ¼ P eqNðfnigÞ 1
�

þ eV
kBT

WNðfnigÞ
�

ð7Þ

with the equilibrium distribution

P eqNðfnigÞ / e
�b
P

j
dnj1ðEj�lÞ

: ð8Þ

This ansatz solves the stationary master equation to order ðeV =kBT Þ0 because the V ¼ 0 solution is the equilibrium
distribution. To order ðeV =kBT Þ1 the stationary master equation (3) corresponds to the following equation for
WNðfnigÞ,
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0 ¼
X
j

dnj0 CLj

	(
þ CRj

�
fj½WNþ1ðfnigþjÞ � WN ðfnigÞ� þ

CLj � CRj
2

fj

þ
X
k

dnk1C
kj
in½WNðfnigþj�kÞ � WNðfnigÞ�

)
;

0 ¼
X
j

dnj1 CLj

	(
þ CRj

�
ð1� fjÞ½WN ðfnig�jÞ � WNþ1ðfnigÞ� �

CLj � CRj
2

ð1� fjÞ

�
X
k

dnk0C
jk
in ½WNþ1ðfnigÞ � WNþ1ðfnig�jþkÞ�

)
:

ð9Þ

To arrive at (9), we use the following relations:

P eqNþ1ðfnigþjÞ=P
eq
N ðfnigÞ ¼ e�bðEj�lÞ ¼ fj

1� fj
;

Cjk
in=C

kj
in ¼ e�b½Ek�Ej �;

dfj=dEj ¼ �bfjð1� fjÞ:

3.1. Perturbation theory in C=Cin

In the limit of large inelastic scattering C=Cin ! 0 (C ¼ C
L þ C

R
denotes the inverse dwell time and C

k
the mean

tunneling rate to lead k), the inelastic scattering term dominates the master equations (9) and equilibrates all levels with
N ¼ N electrons with each other. The same holds for N ¼ N þ 1 but levels with different N are not equilibrated.

Thus,

WNðfnigÞ ¼ WN ð10Þ

becomes independent of fnig. In this case one has to solve a master equation for WN which results in [16]

WN ¼ constþ 1
2

hhCR � CLii
hhCR þ CLii

dNNþ1; ð11Þ

where

hhX ii ¼
X
j

½1� FeqðEjjNÞ�fjXj: ð12Þ

Here, FeqðEjjNÞ is the equilibrium probability to have level Ej occupied if N electrons are in the quantum dot. At high

temperatures FeqðEjjNÞ can be replaced by the Fermi distribution fj.
In a first step beyond the infinite inelastic scattering limit, we apply perturbation theory in C=Cin. We employ the

ansatz

WNðfnigÞ ¼ WN þ C
C�
in

X
j

dnj1dWðjÞ; ð13Þ

where C�
in ¼ Cj

in=ð1� fjÞ depends only weakly on j for the levels around the Fermi energy which contribute to the

conductance and Cj
in ¼

P
k ½1� FeqðEk jNÞ�Cjk

in is the inelastic scattering rate for level j (we refer to Cin as C
j
in for Ej ¼ 0).

With the ansatz (13), the second equation of (9) reads to leading order in C=Cin:

0 ¼
X
j

dnj1 ðCLj

(
þ CRj Þð1� fjÞ

1

2

hhCR � CLii
hhCR þ CLii

þ
CLj � CRj
2

ð1� fjÞ þ
X
k

dnk0C
jk
in

C
C�
in

½dWðjÞ � dWðkÞ�
)
: ð14Þ

Every addend j of this sum vanishes for the solution

dWðjÞ ¼ � 1
2

hhCR � CLii
hhCR þ CLii

CLj þ CRj
C

� 1
2

CLj � CRj
C

: ð15Þ
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Eq. (15) also solves the first master Eq. (9) if one takes into account that Cjk
in=C

kj
in ¼ ð1� fjÞ=fjfk=ð1� fkÞ. Thus, the

ansatz solves the stationary master Eq. (9). Note that since the average of dWðjÞ is zero, the term
P

k Cjk
indWðkÞ, which

averages over many levels k, is zero in the leading order in D=ðkBT Þ.
The solution (15) of the master equation yields the conductance

G ¼ e2

kBT
P eqðNÞ hhCLiihhCRii

hhCL þ CRii

 
� hhCL2iihhCRii2 þ hhCR2iihhCLii2 � 2hhCLii2hhCRii2

C�
inhhCL þ CRii2

!
; ð16Þ

a ¼ 1
12

D
kBT

þ C
2Cin

; ð17Þ

where P eqðNÞ is the equilibrium probability to have N electrons in the dot. This result reproduces the limit C=Cin ! 0 of
[16] and holds to first order in C=Cin and D=kBT . In particular, it describes correctly the high temperatures regime, since
for a typical scattering model C=Cin ! 0 for D=kBT ! 0.

3.2. Approximative analytical solution

The inelastic scattering model (5) is exponentially cut off to states outside an energy window of OðkBT Þ and, thus, Cin
vanishes at low temperatures. At kBT � D, on the other hand, there are many states M / T=D connected by the in-
elastic scattering. Therefore, for T ! 1, the total inelastic scattering rate Cin=C ! 1 and the result (17) is approached.
Inspired by the high-temperature perturbative expansion, we develop in the following a self-consistent approximation.

Similar to (13), we employ the ansatz

WNðfnigÞ ¼
X
j

dnj1WðjÞ: ð18Þ

With this ansatz, the master equation (9) reads for every addend j:

0 ¼ ðCLj þ CRj ÞfjWðjÞ þ ðCLj � CRj Þfj=2�
X
k

dnk1C
kj
in WðkÞ½ � WðjÞ�;

0 ¼ �ðCLj þ CRj Þð1� fjÞWðjÞ � ðCLj � CRj Þð1� fjÞ=2þ
X
k

dnk0C
jk
in WðkÞ½ � WðjÞ�:

ð19Þ

With a large number of final states to scatter to, we can decouple the scattering amplitudes dnk0C
jk
in and occupationsWðkÞ

in Eq. (19)X
k

dnk0C
jk
inWðkÞ !

X
k

dnk0C
jk
in|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Cj
in

W: ð20Þ

Here, W should, in principle, be a weighted average over levels within a range of OðkBT Þ around a particular level j
considered. However, only levels around the Fermi energy are of interest for the conductance since the contribution of

every level j to the conductance is multiplied by fjð1� fjÞ. For this reason, we approximately treat

W ¼
X
j

fjð1� fjÞWðjÞ
X
j

fjð1
 ,

� fjÞ
!

ð21Þ

in Eqs. (19) and (20) as a constant, and neglect the j dependence of C�
in. With this approximation, the solution for both

Eqs. (19) is

WðjÞ ¼
ðCRj � CLj Þ=2þ C�

inW

C�
in þ CLj þ CRj

; ð22Þ

where self-consistency yields

W ¼ 1
2

hhðCR � CLÞstotii
hhðCR þ CLÞstotii

ð23Þ

with stoti ¼ ðCLi þ CRi þ C�
inÞ

�1
. Since the ansatz (18) solves the master equation (9) it is a posteriori justified to use this

ansatz. From the approximate solution (22), one obtains the conductance
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G ¼ e2

kBT
P eqðNÞ CLi s

tot
i CRi

 **
þ

C�
inhhCRj stotj ii

hhðCLj þ CRj Þstotj ii

!++
: ð24Þ

One would obtain the same form (24) but with hh � � � ii ¼
PM

j¼1 � � � consideringM degenerate levels filled with N 2 f0; 1g
electrons.

The result (24) can be interpreted in the following way: the first term represents processes in which the electron was

not scattered at all. These happen with probability ðCLi þ CRi Þstoti and the resulting conductance peak heights are

proportional to CLi C
R
i =ðCLi þ CRi Þ; yielding CLi C

R
i stoti altogether. The second term represents contributions from elec-

trons that were inelastically scattered after tunneling from one lead, and their contribution to the conductance is

hhCRj stotj ii=hhðCLj þ CRj Þstotj ii.
Eq. (24) is the main result of this section. It is based on approximation (20) which can be justified in the high

temperature limit. The particular advantage of this approach is that it gives not only the correct leading high tem-

perature behavior (Eq. (16)) but also reproduces correctly the limits Cin ¼ 0 and Cin ¼ 1 for all T including a ¼ 1=4 at
T ¼ 0. Below we demonstrate that this approach works pretty well in the regime kBT � D.
In order to calculate G and a one has to average Eq. (24) w.r.t. the different ensembles. One could do so numerically,

but it is possible to get analytical results via expanding Eq. (24) in powers of D=kBT . This procedure is described in
detail in the appendix. In the following we use the results of this expansion as our estimate of the dephasing rate.

3.3. Numerical and experimental tests

To test the validity of the approximative analytical solution, we compare the results to the numerical solution. The

latter is obtained by solving the master equation (3) by sparse matrix inversion. 1 As we are interested in not too low

temperatures, we assume in the following a picket-fence distribution of the one-particle eigenlevels with spacing D
between consecutive spin-degenerate levels (E2j ¼ E2j�1 ¼ jD; Ck

2j ¼ Ck
2j�1; C

k
j ¼ C=2).

Fig. 1 compares values of the analytical approximation for a with the numerical values. The agreement is very good
for sufficiently high temperatures, and reasonable even for low T. In the whole temperature regime, the deviations are

within current experimental accuracy of magnetoconductance measurements. Fig. 1, thus, shows that the analytical

approach provides a reliable way to determine Cin from experimental measurements of a, in the whole temperature
regime.

Due to the phenomenological nature of our approach with a free parameter Cin (i.e., unspecified dephasing
mechanism), we cannot predict the dephasing rate of a given sample. However, a direct experimental test is provided by

measuring values of a in a given dot at fixed T, as a function of C (which can be achieved by changing the contact

1 For kBT < 1:6D, we took into account all configurations fnig which involve levels in ½�4kBT � � � 4kBT � with P eqfnig=
minfnig P

eqfnig > expð�5D=kBT Þ; for kBT > 1:6D the interval was ½�3kBT � � � 3kBT � and the exponential cut-off �4:5D=kBT .

Fig. 1. Comparison of the numerical solution of the full master equation with the high temperature approximation. The latter is seen

to work well for kBT > D (reproduced from [14]).
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setting). The theoretical dependence of a on C involves a single fitting parameter, i.e., the unknown total scattering rate
Cin which is assumed to be unaffected by the contact setting. A first step in this direction was done in [11], and in the
inset of Fig. 2 we compare the prediction of our high temperature approximation with the measurements of a for
three different values of C. An excellent agreement is obtained, though more data points are required for reliable
conclusions.

4. Results

The good agreement of our approach with numerical solutions, together with the excellent agreement with the

limited experimental data lead us to believe that this approach can be used to extract dephasing rates from experimental

measurements of closed dots magnetoconductance with reasonable accuracy.

We now demonstrate the use of the above theory to extract dephasing times from the existing data points (mean

values and error bars) of Folk et al. [11]. Fig. 2 presents these estimates as symbols and error bars, respectively, and

Fig. 2. Dephasing times, s/, as extracted from the data points in [11] for four different dots: D ¼ 28 leV (circles, long-dashes error
bars), D ¼ 10 leV (squares, solid error bars), D ¼ 2:4 leV (up-triangles, dashed error bar), and D ¼ 0:9 leV (dot-dashed error bar);
dotted line: fit so open dot experiments as calculated in [6]. Error bars which extend up (down) beyond the graph should be understood

as going up to infinity (down to zero); if no corresponding point is visible the experimental mean value itself gives s/ ¼ 1 (or s/ ¼ 0).
In the inset, we fit experimental measurements for different values of C [11] with our theory. The single fitting parameter is Cin ¼ 0:25
leV, or s/ ¼ 16 ns (reproduced from [14]).

Fig. 3. A contour plot of a as a function of T=D and Cin=C, based on the high temperature approximation. The values the bold
contours are specified. Given T , D and a from future experiments, one can extract Cin=C from this figure (reproduced from [14]).
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compares them with open dot values [6]. A clear enhancement of the dephasing times compared to open dots is ob-

served. In addition, dephasing times strongly depend on D (as can be seen at T ¼ 45 mK). This is in contrast to open dot
results [6]. An additional suppression of a for kBT < D, resulting from level-spacing fluctuations was not included so-far
but will be discussed in Section 5 [15]. Because of this effect, our results underestimate the dephasing times for kBT < D.
Also note that, the result for the D ¼ 0:9 leV quantum dot which is consistent with s/ ¼ 0 should be interpreted
carefully since the result implies �hCin > D and the master equation is not applicable anymore. Based on our analysis, the
recent experiment [11], measuring dephasing in closed quantum dots is consistent with dephasing due to electron–

electron interaction alone, including the prediction of the critical vanishing of dephasing rate. However, given the large

error bars of the current experimental data, one cannot exclude an algebraic behavior or even a saturation of the

dephasing rates for T ! 0. Nevertheless, the behavior is clearly different from that of open quantum dots [6] and is
D-dependent.
Since the analytic form of our results, as detailed in Appendix A, is cumbersome, we provide Fig. 3, which can be

used to practically analyze future experiments. The figure presents a as a contour-plot in the space spanned by kBT=D
and Cin=C. For a given measurement, with known temperature and a, one can easily read the proper value of Cin=C.

5. RMT eigenlevel fluctuations

In the previous sections we studied the effect of dephasing on the magnetoconductance of a closed quantum dot.

Here we show that at low temperatures, where the dephasing mechanism is not very effective, another effect arises, due

to the fluctuations in the RMT spectrum, that reduces a. However, very recently Usaj and Baranger [18] studied the
effect of the exchange term and found that this term can actually increase a.
Previous works [4,10,12,14,17] have generally considered a picket-fence spectrum, i.e., a rigid level spacing between

successive eigenlevels in the quantum dot, for the calculation of the conductance. This ignores the effect of spectral

eigenlevel fluctuations. The picket-fence spectrum is a good approximation for both very high temperatures and very

low temperatures [4], and a comparison of PðGmaxÞ with full RMT statistics and a picket-fence spectrum without spin-
degeneracy at three temperatures showed only minor deviations [19].

Here, we study the full RMT statistics in detail with and without spin-degeneracy, and find significant differences

compared to the picket-fence spectrum, in particular in an experimentally relevant regime kBT KD. The spectral
fluctuations lead to lower values of a than 1/4 such that this value is not universal, even in the absence of any dephasing
mechanism. One therefore has to be careful while using a as a probe for dephasing in this temperature regime.
Within the constant interaction model, the conductance of a quantum dot is given by the formula [16]

G ¼ e2

kT

X
j

CLi C
R
i

CLi þ CRi
PeqðNÞP ðEijNÞ½1� f ðEi � lÞ�: ð25Þ

Without inelastic scattering Eq. (25) can be easily obtained from the solution of the master equation (19)

WNðfnigÞ ¼ constþ
1

2

X
j

dnj1

CLj � CRj
CLj þ CRj

:

Contrary to Section 4 we now employ the full RMT distribution of the eigenlevel energies Ei [4]. The first term in the

sum CLi C
R
i =ðCLi þ CRi Þ depends only on the eigenfunctions of the dot, and thus is uncorrelated with the spectrum within

the RMT approach. The ensemble average of this term in the absence (GOE) or presence (GUE) of a magnetic field is

CLi C
R
i

CLi þ CRi

* +* +
¼ 1=4; GOE;
1=3; GUE:

�
ð26Þ

This yields the value a ¼ 1=4 if the weights PðEijNÞ are the same for both ensembles. This should be the case in the low
temperature regime kBT � D since only one level E0 contributes with maximal weight, P ðEijNÞ � di0. In general, the

main contribution to the sum comes from OðkBT=DÞ levels around the Fermi energy which gives the same contribution
at large temperatures kBT � D for the GOE and GUE, a ¼ 1=4 in this regime as well.
However, for kBT KD, the probability to have more than one level in an energy window kBT around the Fermi

energy is increased for the RMT eigenlevel distribution compared to the picket-fence spectrum. These additional levels

enhance the conductance. Since there are more close-by levels for the GOE case, due to the weaker level repulsion, the

GOE conductance is enhanced more, and a is suppressed.
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A second important effect is the optimization of the chemical potential for the Coulomb blockade peak. This effect

was generally ignored, as it is technically cumbersome to consider, and is not significant for both very low and very high

temperatures. Disregarding this effect means that a theorist optimized the chemical potential w.r.t. the averaged con-

ductance, instead of optimizing for every realization as in the experiment. Whenever there is a close-by level, the po-

sition of the peak is shifted to optimize the contribution from both levels. Typically, a level with very low tunneling rates

(and, thus, suppressed conductance peak) would get enhanced significantly by contributions from its neighbors. If the

tunneling rate of a neighboring level is much higher, the peak position lmax is shifted towards it. As the distribution of
level spacings is different depending on the existence of magnetic field, this enhancement mechanism is again more

effective in the absence of magnetic field (GOE), where probabilities of small spacing and of small conductances are

higher. Thus, this effect which was neglected in [19] suppresses a even further.
We evaluated the sum (25) numerically by drawing CLðRÞi from the Porter-Thomas distribution and Ei according to

the Wigner-Dyson distribution. Levels within a window of �4kBT around the Fermi energy have been taken into
account and the Fermi energy l in Eq. (25) has been adjusted to yield Gmax for every realization.
Fig. 4 compares the probability distribution P ðGmaxÞ for a picket-fence spectrum vs. the full RMT level statistics. As

explained above, RMT spectral fluctuations enhance the conductance. In particular, the probability to have a very low

Fig. 4. Probability distribution P ðgÞ of the dimensionless closed dot conductance g defined by Gmax ¼ e2=�h ð�hC=kBT Þg at kBT ¼ 0:2D in
the presence of spin-degeneracy (left: GOE; right: GUE; solid line: RMT spectral fluctuations; dashed line: picket fence) (reproduced

from [15]).

Fig. 5. Magnetoconductance a vs. kBT=D for the spin-degenerate case (dashed line) and without spin-degeneracy (solid line). Taking
into account the RMT spectral fluctuations, a is reduced from its ‘‘universal’’ value a ¼ 1=4, in particular in the experimental relevant
regime 0:1D < kBT < 0:8D (reproduced from [15]).
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Gmax is reduced and the probability to have an intermediate Gmax is enhanced. The reason for the reduction is that a very
low Gmax requires CL or CR in Eq. (25) to be low. RMT spectral fluctuations enhance the contributions from close-by
levels, which typically do not have a low value of CLðRÞ at the same time. Thus, the peak position of l is shifted towards
a close-by level and the conductance occurs through both levels. Notably, the effect of phase-breaking inelastic scat-

tering processes leads to similar changes (see Section 4) [14].

Deviations of a from the ‘‘universal’’ value 1/4 have been interpreted as being a result of dephasing. While dephasing
would certainly suppress a, we note here that in the regime kBT KD, the spectral fluctuation effects discussed above,
lead to a similar effect. In Fig. 5 we present the results for a as a function of the scaled temperature kBT=D, for both spin-
degenerate spectrum and the case of broken symmetry. While the effect seems to be small, one should keep in mind that

in the low temperature regime, even very strong dephasing does not suppress a substantially (see Fig. 1 and [12]), and
thus the correction due to spectral fluctuations is comparable with or even larger than the effect of dephasing [12,14].

One should therefore cautiously use a as a probe of dephasing in this regime.

6. Conclusion

In conclusion, we provide a theoretical approach to extract the inelastic scattering rate in closed dots from exper-

imental measurements of the weak-localization correction a. Analyzing a recent experiment by Folk et al. [11], we see a
clear enhancement of the dephasing time compared with open dots values. Contrary to open quantum dots, the

dephasing time is also dependent on the size of the quantum dot. These results agree with the theoretical predictions for

electron–electron interaction, in particular, a vanishing dephasing rate at a critical D-dependent temperature. We note,
however, that the available experimental data is limited and has considerably statistical uncertainties. Thus, future

experiments are necessary and we offer Fig. 3 to extract the temperature and level-spacing dependence of the inelastic

scattering rate and to thoroughly test the prediction of a diverging dephasing time.

When analyzing future experiments one should take into account that in the low temperature regime RMT spectral

fluctuation and the exchange term [18] effect the magneto conductance a and probability distribution function PðGmaxÞ,
in particular in the regime 0:1D < kBT < 0:8D. Even without dephasing a is different from 1/4 and temperature de-
pendent; a can be reduced down to a � 0:2 by RMT eigenlevel fluctuations, below the lower limit of a picket-fence
model with dephasing (see Fig. 1) in this temperature range.
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Appendix A. Analytic expansion of Eq. (24)

In this appendix we show how to perform the disorder averaging in Eq. (24). For that purpose, let us rewrite this

equation in the following way:

hGi �
X
i

xi
CLi C

R
i

CLi þ CRi þ C�
in

 *
þ CLi C

�
in

CLi þ CRi þ C�
in

P
j xjC

R
j =ðCLj þ CRj þ C�

inÞP
j xjðCLj þ CRj Þ=ðCLj þ CRj þ C�

inÞ

!+
; ðA:1Þ

where xi � fið1� fiÞ, and we omitted the irrelevant prefactors which do not change upon applying magnetic field.
Within RMT, both the eigenvalues and the eigenfunctions fluctuate. Since the statistical properties of the spectrum

are uncorrelated with those of the eigenfunctions, one can separately average upon the C�s and the x�s. Here, we restrict
ourselves to the approximation of a picket-fence spectrum, in which the spectrum is assumed to be equally spaced,

ignoring the RMT spectral fluctuations, such that one has to average upon the C�s alone. The picket-fence approxi-
mation is reasonable for large enough temperatures.

Before we start the averaging, we introduce some definitions to simplify future notation. First, we define the

sums

Fm �
X
j

xm
j ðA:2Þ
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and the integrals

I0 �
C1C2

C1 þ C2 þ C�
in

� �
ðA:3Þ

¼
Z
dC1 dC2

C1C2
C1 þ C2 þ C�

in

PbðC1ÞPbðC2Þ; ðA:4Þ

Imn �
Cm
1C

n
2

ðC1 þ C2 þ C�
inÞ

mþn

� �
; ðA:5Þ

where the average is for C1 and C2 being two independent random numbers distributed according to the Porter-Thomas
distribution PbðCÞ. These integrals depend on C�

in and b, but we suppress this in the notation for simplicity. The ana-
lytical values of these integrals are given below.

In terms of these quantities, the first term in Eq. (A.1) is easily expressed, and one gets the contribution

X
i

xi
CLi C

R
i

CLi þ CRi þ C�
in

* +
¼ F1I0: ðA:6Þ

However, the second term is more cumbersome, due to the appearance of the different C�s in the denominator. In order
to overcome this, we employ an expansion around the average. We use short notation for the C�s fractions, defining

am � CLm
CLm þ CRm þ C�

in

; bm � CRm
CLm þ CRm þ C�

in

ðA:7Þ

and rewrite the denominator in the following way:X
j

xjðaj þ bjÞ ¼
X
j

xjð2I10 þ ðaj � I10Þ þ ðbj � I10ÞÞ ðA:8Þ

¼ 2F1I10 1
�

þ
P

k xkððak � I10Þ þ ðbk � I10ÞÞ
2F1I10

�
: ðA:9Þ

Using this form, one can write the second term of Eq. (A.1) in the following way:

C�
inð
P

i xiaiÞð
P

j xjbjÞ
2F1I10

X1
m¼0

ð
*

� 1Þm
P

k xkðak þ bk � 2I10Þ
2F1I10

� �m
+
: ðA:10Þ

One can now average term by term the infinite sum over m. As we focus in the high-T limit, we will collect the terms

according to their T dependence. For that purpose, one has to bear in mind that the T-dependence comes from the Fm�s.
Asymptotically (for large T) they are all linear in T, and can be approximated by

F1 � T ; F2 � T=6; F3 � T=30 . . . ðA:11Þ

Thus we would like to collect terms in powers of the Fm�s. It is important to notice that the expression summed over k
has vanishing average. Therefore, the only occasion in which it contributes is when the summation index is ‘‘paired’’

with some other index. Such pairing reduced the number of contributing terms, and thus the power of T. A term with

no pairing contributes to the leading order (i.e., OðkBT=DÞ), a term with one pair contributes to the next order (i.e.,
Oð1Þ), etc. This is why the expansion converges, taking large enough m, as will be explained below.

The first term in the sum, m ¼ 0, results in the following contribution:

C�
in

2F1I10

X
i

xiai
X
j

xjbj

* +
¼ C�

in

2F1
ðI10ðF 21 � F2Þ þ I11F2Þ ðA:12Þ

and one already sees that it gives both terms OðD=kBT Þ and terms Oð1Þ.
For the moment m, there are m such terms needed to be paired, and the minimal way to do it is to create m=2 pairs.

This is the reason why it is sufficient to consider a finite number of moments for a certain power of T. The first moment

m ¼ 1 is given by

� C�
in

ð2F1I10Þ2
X
i

xiai
X
j

xjbj
X
k

xkðak

*
þ bk � 2I10Þ

+
ðA:13Þ
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and contributes only for k ¼ i or k ¼ j. Collecting all terms, the contribution of this term is

� C�
inF2
4F1I10

ðI20 þ I11 � 2I210Þ �
C�
inF3
2F 21 I

2
10

ðI21 � I10ðI20 þ 2I11 � 2I210ÞÞ ðA:14Þ

For the next moments, the number of possible pairings is big. Here we aim at calculating the first three terms only, i.e.,

up to OðD=kBT Þ, and thus we allow only two pairings per term. For m ¼ 2 the term to be averaged is

� C�
in

ð2F1I10Þ3
X
i

xiai
X
j

xjbj
X
k1

xk1ðak1

*
þ bk1 � 2I10Þ

X
k2

xk2ðak2 þ bk2 � 2I10Þ
+

ðA:15Þ

and the contributing pairings are (a) k1 ¼ k2 (one pairing) (b) k1 ¼ i, k2 ¼ j and vice-versa. The resulting contributions
(ignoring terms OðD=kBT Þ) are

ðaÞ C�
inF2
4F1I10

ðI20 þ I11 � 2I210Þ þ
C�
inF3
4F 21 I

2
10

ð3I21 þ I30 � 2I10ð3I20 þ 3I11 � 4I210ÞÞ; ðA:16Þ

ðbÞ C�
inF
2
2

4F 31 I
3
10

ðI20 þ I11 � 2I210Þ
2
: ðA:17Þ

The third moment, m ¼ 3, also has two contributions (a) k1 ¼ k2 ¼ k3 and (b) k1 ¼ i, k2 ¼ k3 (and permutations).
The resulting Oð1=T Þ contributions are

ðaÞ � C�
inF3
8F 21 I

2
10

ðI30 þ 3I21 � 6I10ðI11 þ I20Þ þ 8I310Þ; ðA:18Þ

ðbÞ � 3C
�
inF
2
2

4F 31 I
3
10

ðI20 þ I11 � 2I210Þ
2
: ðA:19Þ

The fourth moment m ¼ 4 gives a Oð1=T Þ contribution only for the pairing m1 ¼ m2, m3 ¼ m4 (and permutations),
leading to

3C�
inF
2
2

8F 31 I
3
10

ðI20 þ I11 � 2I210Þ
2
: ðA:20Þ

For the fifth moment to contribute, at least three pairings are needed, and thus its leading order contribution is

Oð1=T 2Þ. Similarly, one can easily verify that higher moments do not contribute to Oð1=T Þ.
Collecting all the contributions from Eqs. (A.6), (A.12), (A.14) and (A.16)–(A.20), one obtains the final expression

for hGi:

hGi � F1ðI0 þ C�
inI10=2Þ þ

C�
inF2
2F1

I11 � I20
2I10

þ C�
inF3
8F 21

I30 � I21 þ 2I10ðI11 � I20Þ
8I210

� C�
inF
2
2

8F 31

ðI20 þ I11 � 2I210Þ
2

I310

þOð½D=kBT ��2Þ: ðA:21Þ

In order to obtain the magnetoconductance, one needs to have the values of the integral Imn for the GOE (b ¼ 1) and
GUE (b ¼ 2) cases. These can be directly computed and the results are

I0 ¼
1
4
� C�

in

8
þ ðC�

in
Þ2

16
expðC�

in=2ÞEið1;C�
in=2Þ; GOE;

1
3
� C�

in

6
þ ðC�

in
Þ2

6
� ðC�

in
Þ3

6
expðC�

inÞEið1;C�
inÞ; GUE;

8<
: ðA:22Þ

I10 ¼
1
2
� C�

in

4
expðC�

in=2ÞEið1;C�
in=2Þ; GOE;

1
2
� C�

in

2
þ ðC�

in
Þ2

2
expðC�

inÞEið1;C�
inÞ; GUE;

8<
: ðA:23Þ

I20 ¼
3
8
þ 3C�

in

16
� 3C�

in

8
þ 3ðC�

in
Þ2

32

	 �
expðC�

in=2ÞEið1;C�
in=2Þ; GOE;

1
3
� 2C�

in

3
� ðC�

in
Þ2

3
þ ðC�

inÞ
2 þ ðC�

in
Þ3

3

	 �
expðC�

inÞEið1;C�
inÞ; GUE;

8><
>: ðA:24Þ

I11 ¼
I20=3; GOE;

I20=2; GUE;

�
ðA:25Þ
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I30 ¼
5
16
þ 25C�

in

64
þ 5ðC�

in
Þ2

128
� 15C�

in

32
þ 15ðC�

in
Þ2

64
þ 5ðC�

in
Þ3
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	 �
expðC�

in=2ÞEið1;C�
in=2Þ; GOE;

1
4
� 3C�

in

4
� 7ðC�

in
Þ2

8
� ðC�

in
Þ3

8
þ 3ðC�

in
Þ2

2
þ ðC�

inÞ
3 þ ðC�

in
Þ4

8

	 �
expðC�

inÞEið1;C�
inÞ; GUE;

8<
: ðA:26Þ

I21 ¼
I30=5; GOE;
I30=3; GUE;

�
ðA:27Þ

where Eið1; xÞ is the exponential-integral function

Eið1; xÞ ¼
Z 1

t¼1

e�xt dt
t

: ðA:28Þ

We thus obtained a closed expression for the conductance for the GOE and GUE cases. Using this, one can evaluate

a in the high temperature regime.
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