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Limited Sensitivity to Analyticity: 
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Classical Hamiltonian systems generally exhibit an intricate mixture of  regular 
and chaotic motions on all scales of  phase space. As a nonintegrability parameter 
K (the "'strength of  chaos") is gradually increased, the analytieity domains of  
functions describing regular-motion components" [e.g., Kolmogorov Arnol'd- 
Moser (KAM)  tori] usually shrink and vanish at the onset of  global chaos 
(breakup of  all K A M tori). It is" shown that these phenomena have quantum- 
dynamical analogs in simple but representative classes of  model systems, the 
kicked rotors' and the two-sided kicked rotors'. Namely, as K is" gradually 
increased, the analyticity domain ~QE of the quantum-dynamical eigenstates 
decreases monotonically, and the width of  NQL, in the global-chaos regime vanishes 
in the semiclassical limit. These phenomena are presented as' particular aspects' o f  
a more general scenario: As K is" increased, ~QE gradually becomes less sensitive 
to an increase in the analyticity domain of  the system. 

I N T R O D U C T I O N  

By the term "chaos" we generally mean a complex, highly irregular motion 
exhibited by a relatively simple nonlinear dynamical system. This motion is 
deterministic, namely it corresponds to an exact solution of the equation 
(or the system of equations) describing the system. This solution is 
associated, however, with an extremely nonanalytic structure in the space 
of the motion, (1) and cannot therefore be described exactly by well-behaved 
functions or convergent series expansions. 

Of particular interest are Hamiltonian systems (2-5) for which the Newton 
equations can be derived from a Hamiltonian H, generally a function of both 
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phase-space variables and time. Hamiltonian systems are interesting because 
of two main reasons: (a) They exhibit, generically, a very rich dynamical 
structure, consisting of regular-motion components (either stable or unstable) 
intricately mixed with chaotic motion on all scales of phase space. (2 6) These 
two kinds of motion then affect significantly each other. Chaotic orbits 
usually look like a random sequence of "quasiregular" segments (6 8) each 
resembling some ordered orbit in its immediate vicinity; this quasiregularity 
leads to slow decays of correlations (6) and related phenomena in Hamiltonian 
chaos. At the same time, the basic features of regular-motion components 
depend strongly on the level of chaos in the system (see below). (b) The exist- 
ence of a Hamiltonian allows for a well-defined first-principles quantization 
of the classical system.(9' 10) Since the basic equations of quantum mechanics, 
e.g., the Schr6dinger equation, are linear in the wave-function, they cannot 
exhibit a strictly chaotic behavior. On the other hand, in the semiclassical 
limit (h much smaller than typical classical actions), quantum dynamics is 
expected to resemble classical dynamics to a significant extent. The 
fundamental question is then how precisely classical chaos manifests itself in 
the behavior of the corresponding quantum-dynamical system in the semi- 
classical limit. This is the problem of "quantum chaos". (9' lO). 

In this paper, we show a vivid manifestation of quantum chaos in 
simple but representative classes of model systems, the kicked rotors (KRs) 
and the two-sided kicked rotors (TKRs). The general Hamiltonians for 
these systems are 

L 2 
HKR = ~ +/~V(O) Av(t)  (1) 

L 2 
HrKR = 2~ + [cV(O)[ A r( t)  -- A r(t  - T/2) ] (2) 

where L is the angular momentum, I is the moment of inertia, /~ is a 
parameter, V(O) is a periodic and analytic function of the angle 0, and 
Ar( t  ) = 5Zs~ _~ d ( t -  sT) is the periodic delta function with time period T. 
In order to state our results, it is necessary to give first some background 
concerning the classical dynamics of these systems. 

The classical dynamics can be visualized in a most clear way by the 
Poincar6 map, connecting the phase-space variables at times t and t + T. 
For  simplicity, we shall restrict ourselves here to the KR case (1), for which 
the Poincar~ map reads as follows: 

Ls+ 1 = L , - k V ' ( O s )  

O,+I=O,+(T/ I )  L~,+~ 
(3) 
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where L s = L ( t = s T - - O  ) and O,.=O(t=sT=O),  for all integers s. After 
defining the variable p = TL/I, it becomes clear that the map (3) depends 
only on the parameter K =  Tfc/I. Different initial conditions (00, P0) lead 
to different orbits (0~,p,) of (3). Some typical orbits are shown in Fig. 1 
for the "standard" potential V( O) = cos( 0) and for different values of K. 
For large K (Fig. ld), chaos prevails, with chaotic orbits filling almost 
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Fig. 1. Typical orbits of the "standard map" (3) with V(0)= cos(0), for different values of 
K =  Tl~/I: (a) K - 0 . 1 .  Here most of the orbits are "horizontal," including many KAM tori, 
and regular motion prevails. Notice the "separatrix" orbit, connecting the points (0, 0) and 
(2~, 0) as well as the points (0, 27r) and (2g, 2z). This orbit is actually a narrow chaotic 
"layer." (b) K = 0.9716 ~ K c. The chaotic separatrix layer is now much thicker than in (a), and 
smaller chaotic layers, associated with stable island chains, are also visible. Here the chaos is 
still "local," since the golden-mean KAM tori still exist (see text). (c) K =  1.2 > K,.. Here no 
KAM tori exist, so that all the localized chaotic layers can merge into a single connected 
chaotic region (global chaos). (d) K =  5, a strong-chaos case. The chaotic region covers a 
large fraction of the phase space. 
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randomly a finite area (m of the (0,, p~.) phase space. For  K ~  1, on the 
other hand, almost all the orbits are "horizontal" (Fig. la), resembling 
those of the integrable case K =  0 of the free rotor for which p,+ ~ = Ps is a 
constant of the motion. Such an orbit generally fills densely a "rotational 
torus," i.e., a curve connecting the points (0, p) and (2re, p) for some p. The 
existence of these tori for K ~ 0 is predicted by the celebrated Kolmogorov-  
Arnol '&Moser  (KAM) theorem, (~2~ but they are actually observed for 
K~< K c where K~ is much larger than typical bounds from KAM theory. For  
example, K~ ~ 0.9716 for V(O) = cos(0) (see Fig. lb). For  K ~  K C, the phase 
space is foliated to a large extent by the KAM tori, as in Fig. la, and chaotic 
orbits are locally confined to a very small fraction of the area between two 
neighboring tori, which are "barriers" to chaotic motion. ~3~ As K is 
gradually increased, KAM tori successively "break" into "cantori, ''(~4~ 
i.e., orbits leaving an infinite family of gaps in 0. Chaotic orbits can cross 
the cantori through the gaps, (13~ leading to a gradual increase of the local 
chaotic regions. At K =  K~. (see Fig. lb), there remains only one discrete set 
of KAM tori, the so-called "golden-mean tori," characterized by 
(p~.)/(2rc) = _ + ( x / ~ - 1 ) / 2 +  r for all integers r. C15) For  K>K~., also these 
tori break into cantori, leading to a transition from local to global chaos 
(Fig. lc). Global chaos features an unbounded, almost random diffusion in 
the p direction. (3, ~3. ~6) 

The breakup of the golden-mean tori, at the onset of the local-to- 
global-chaos transition, is preceded (for K<K,.) by an interesting 
phenomenon. In general, a KAM curve is described by a single-valued 
2~-periodic function p = p(0): (~ 7) 

p ( 0 ) =  ~ ane in~ (4) 
n ~  - - o o  

where the Fourier coefficients an be determined by perturbation theory 
in K starting from functional equations satisfied by p(0), (18 2o) e.g., 
p[O+p(O)--KV'(O)]=p(O)--KV'(O)/2~ Now, both numerical ~18) and 
analytical (2~) results for V( O) = cos( O) indicate that, asymptotically, the 
Fourier coefficients a,  for the golden-mean curve p(O) in (4) decay 
exponentially for K < Kc: 

a,  ~ e x p [ - - f l ( K )  In[] (5) 

where fl(K) is a positive function satisfying fl(K) ~ 0 as K-~ K~. from below. 
For  K sufficiently close to K~, fl(K) is essentially linear in K c -  K. At the 
critical point K=Kc,  an decays only algebraically with n. This fact is 
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closely related to the self-similar structure of the critical golden-mean 
tori,(15, 18~ represented by continuous but nondifferentiable functions p(O). 
Because of (5), the Fourier-series representation (4) of p(O) is analytic 
precisely in the infinite strip [Ira(0)[ <fl(K) in the complex 0-plane. One 
may then say that as K is increased the domain of analyticity of a golden- 
mean torus gradually decreases. This phenomenon reflects in a natural way 
the increase in the region of nonanalytic dynamical structure (i.e., the 
chaotic region) as K is increased. For K>~Kc, the torus or its remnants 
(the cantorus) is a nonanalytic object. 

In this paper, we show that this phenomenon has an analogue in 
the quantum dynamics. Classical orbits or invariant sets, in particular 
KAM tori or chaotic regions, correspond to quantum eigenstates. For 
time-periodic systems such as (1) and (2), these are the eigenstates of 
the unitary evolution operator U in one period, the so-called "quasi- 
energy" (QE) states. We consider the systems (1) and (2) for naturally 
defined potentials VN(O), N= 1,2,..., converging in the derivative to 
V( O) = cos( O). The domain of analyticity ~t:v of VN(O) generally 
increases without bounds with N. For a given potential VN(0), we show 
that the domain of analyticity ~QE.N of the QE states is not larger than 
~x- AS K is increased at fixed k (by increasing T/I), the width of 
~QE, N decreases monotonically. In the global-chaos regime (K>Kc)  and 
as N ~  ~ ,  the width of ~QE. N "saturates" to a value which, under cer- 
tain assumptions, is proportional to v 2, where v is a scaled (dimen- 
sionless) h for the problem. Thus, for K arbitrarily close to Kc from 
above, ~QE, N shrinks to zero in the semiclassical limit ( v ~  0), in con- 
formity with the classical situation. These phenomena are particular 
aspects of a more general scenario: As K is increased, ~QE. N gradually 
becomes less sensitive to an increase in the domain of analyticity ~ x  of 
the system. 

This paper is mostly a review and reformulation of results in previous 
works,(22 24) so as to emphasize and extend the idea of limited sensitivity to 
analyticity as a manifestation of quantum chaos. In Sec. 2, we consider 
basic phenomena in the systems (1) and (2), the quantum resonance and 
the quantum antiresonance (QAR). In Sec. 3, we show that asymptotic 
exponential "QAR-localization" in angular momentum occurs for ~ in the 
immediate vicinity of QAR. This localization is associated with a classically 
integrable limit and is totally determined by the analytical properties of the 
potential (full sensitivity to analyticity). The main results are in Sec. 4, 
where we study the transition to dynamical localization (~~ as the level of 
chaos is increased. We show, on the basis of extensive numerical data, that 
this transition is accompanied by a gradual decrease in the sensitivity to 
analyticity. 
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2. Q U A N T U M  RESONANCE AND Q U A N T U M  ANTIRESONANCE 

The evolution operators in one period (from t =  - 0  to t =  T- -0) ,  for 
(1) and (2), are given by 

UKR(T) = e i ~ e - ~ k v ~ ~  

UTKR(T)=e m~2/2e~kV~~ ~2/2e ~kv(o) 

(6) 

(7) 

where h = L / h = - i d / d O ,  T=hT/2L  and k = k / h .  Here r is the scaled 
(dimensionless) h for the problem. 

Since the spectrum of the angular-momentum operator L = ~h consists 
of all the integer multiples of h, one has, identically, 

UxR(Z = 2rcrn)=e ikv{o) 

UTXR(T = 4rcm) = 1 

(8) 

(9) 

i,~ of (6) for for all integers m. Relation (8) implies that the spectrum e 
T = 2rim is absolutely continuous, with the "quasienergy" (QE) ~ ranging 
in the interval [kV,,,i,1, kVm,x], where Vmi,l(V1,~,x) is the minimum (maxi- 
mum) value of V(O). This continuity of the QE spectrum implies that the 
expectation value ( L 2 ) ,  in an arbitrary quantum state, increases quadrati- 
cally with time, < L 2 ) oc t~. ~25) This quantum "ballistic" motion, which is in 
sharp contrast with the classical diffusive motion <L2)oct  expected for 
K>K~. (see Secs. I and 4), is called "quantum resonance" (QR). (25) One 
can show (25) that QR occurs for general rational values of Un, but the rate 
of quadratic growth Q in < L  2> = Qt 2 is generally much slower than that 
for T = 2rim. One then refers to the simple case of r = 2nrn in (8) as to the 
"fundamental" QR. 

The fundamental QR for m = 0, i.e., r ~ 0, can be easily understood 
"classically." The limit r ~ 0 is equivalent to T / I ~  O. In the latter limit, 
0 in the map (3) becomes a constant of the motion, leading to the ballistic 
motion L,  = L o -- sl~V'(O), completely analogous to the quantum one. QRs 
associated with general, rational values of r/n ~ 0 cannot be explained 
classically. 

Relation (9) for the TKR implies a phenomenon diametrically 
opposite to QR: exactly periodic recurrences of an arbitrary wave packet 
with the basic period T. Since this phenomenon occurs at values of z 
where QR takes place in the KR, we call it "quantum antiresonance" 
(QAR). (23"24) At QAR, the QE spectrum consists just of the single, 
infinitely degenerate level o) = 0. In the next section we show that the QAR 
for m = 0 (i.e., T ~ 0) has a classical explanation, as in the QR case. 
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QAR occurs also in the KR provided the potential satisfies V(O + n) = 
-V(O). This can be seen most clearly using the following relation between 
the operators (6) and (7), valid only for such a potential: 

U~R(~+r/2)=UyKR(r) (lO) 

Together with (9), relation (10) implies that period-2 QAR occurs in the 
KR for r = (2m + 1 ) n, m integer. This QAR was first noticed in Ref. 25 for 
V(O) = cos(0). Unlike the general QAR (9) in the TKR, this QAR has no 
classical explanation since r = (2m + 1) n ~ 0. In fact, since the two sides of 
relation (10) are evaluated at different values of r (the scaled h), this rela- 
tion has no classical counterpart. 

3. QAR-LOCALIZATION A N D  FULL SENSITIVITY TO 
ANALYTICITY 

As we have seen in the previous section, the QE spectrum at QAR is 
infinitely degenerate. The natural question is then precisely how this 
degeneracy is removed by slightly perturbing r near v--4rim. This question 
was investigated in our previous works, (23, 24) and the following statement 
was proven in the framework of a self-consistent framework: The QE spec- 
trum of the TKR for v = 4rcm + e and infinitesimal g is a pure point, and the 
QE states exhibit asymptotic exponential localization ("QAR-localization") 
in L space. The inverse localization length, which gives the width of the 
analyticity domain of the QE states, is completely determined by the 
analyticity properties of the system. Thus, infinitesimally close to QAR, one 
has Jhll sensitivity to analyticity. 

We give here the main steps of the proof. Using the operator identity 

1 eABe A=B+[A,B]+~. .[A,[A,B]]+. . .  (11) 

and expanding the operator e x p ( -  irh2/2) = e x p ( -  ie~ 2) in powers of e, it is 
easy to show that the evolution operators (7) can be written, to first order 
in e, as exp(-i2eG~), where 

I k I z k2 G,= ~ - ~  V'(O) + ~  V'2(O) (12) 

If the eigenvalue problem for G~ is G~ ~9 = ~9, we perform the gauge trans- 
formation 

q0 = exp[ -ikV(O)/2] r (13) 
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and obtain for q), using (12), the eigenvalue equation 

k 2 
d2q~ F V'2(O) rp =~q~ (14) 

- dO 7 

The problem has thus been reduced to that of a Schr6dinger equation with 
a periodic potential. The spectrum ~ then has a band structure, but because 
of the periodicity condition q~(2rc)=q~(0), only the level with zero 
quasimomentum is picked out from each band. This gives, in general, a 
point spectrum. Now, being the solution of the linear differential equation 
(14), ~o(0) is analytic at least in the domain of analyticity of VP(0). (26) Let 
7 be the smallest distance of a singularity of V'(O) from the real 0-axis. 
Then the Fourier-series expansion of the QE states ~o or ~ in (13) will con- 
verge in an infinite horizontal strip symmetrically positioned around the 
real 0-axis and having width 2y (~ where 7(0) 97 .  (26) This strip will be 
naturally identified as the domain of analyticity of the QE states. Its half 
width 7 ~~ is totally determined by the analyticity properties of the potential 
in (14), as is well known from the theory of linear differential equations in 
the complex plane. (26) Clearly, the Fourier coefficients of the QE states 
decay asymptotically as e x p ( -  7 ~~ In] ). This is the QAR-localization in the 
angular momentum L = nh, with localization length ~(o) = 1/Tin) ~< 1/7. 

As an example, the standard potential V(O)= cos(0) is analytic in the 
entire complex plane, so that 7 ~~ =7  = oc and ~o~= 0. In fact, Eq. (14) 
reduces in this case to the Mathieu equation, (26'27) whose solutions in 
angular-momentum space are known to decay, asymptotically, faster than 
exponentially (i.e., like n-~). 

Another interesting example is the potential 

V(O) = A arctan[~c cos(0) -- ;Co] (15) 

where A, K and K 0 are some constants. One c a n  s h o w  (24) that in the case 
of (15) 7 <~ is exactly equal to 7 (not just 7 (~ >Y), and Y can be exactly 
related to K and K 0. 

As in the case of the fundamental QR for m = 0 (see the previous 
section), also the m = 0 QAR-localization can be understood classically by 
considering the limit T--, 0 (i.e., ~ ~ 0) of the TKR. One c a n  s h o w  (24) that 
the Hamiltonian (2) reduces in this limit to 

H e f r = ~ G ,  = ~  V(0)J + ~ V'2(0) (16) 

The effective Hamiltonian (16) is, obviously, integrable (no chaos!), and 
can be considered as the classical counterpart of the quantum operator 
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(12). After the canonical transformation L'= L-[cV'(O)/2 [analogous to 
the gauge transformation (13)], Her becomes essentially the Schr6dinger 
Hamiltonian in (14). Thus, QAR-localization is associated with a classi- 
cally integrable limit. The full sensitivity to analyticity in the infinitesimal 
neighborhood of QAR is consistent with this fact. 

4. TRANSITION TO DYNAMICAL LOCALIZATION AND LIMITED 
SENSITIVITY TO ANALYTICITY 

In the previous sections we have seen that the limit ~ ~ 0 of both 
the KR and the TKR Hamiltonians at fixed k is classically integrable. In 
the TKR case, the QE eigenvalue problem reduces in this limit to Eq. 
(14), from which it follows that the QE states are exponentially localized 
in L space, with the localization length ~(0~ completely determined by 
the analytical properties of the potential (full sensitivity to analyticity). 
In this section, we consider the case of ~ small (~ < 2re) at fixed k, such 
that, for the maximal values of r considered, K = 2~k > Kc. Then, as r is 
gradually increased within the semiclassical regime (z small), the trans- 
ition from local to global chaos takes place. It is well known (~~ 
that the QE states for the KR are exponentially localized in L space 
also in the global-chaos regime for generic values of z. This localization, 
called "dynamical localization" (DL), (l~ is, however, basically different 
from QAR-localization. The DL length ~ in the semiclassical regime 
appears to be almost proportional to the chaotic diffusion coefficient D 
[see relation (27) below], (29~ in contrast with the QAR-localization 
length ~(0~ which is totally determined by the analyticity properties of 
the potential. The transition from QAR-localization to DL as ~ is 
increased is then accompanied by a gradual decrease in the sensitivity to 
analyticity. 

Our analysis makes use of an important and well-known result in 
quantum chaos. The QE problem for time-periodic systems such as (1) and 
(2) is exactly equivalent, in the angular-momentum representation and for 
generic (irrational) values of z/n, to the equation describing a pseudo- 
random tight-binding model. (23'24"28'31) It was originally (28~ assumed, and 
later ~31) shown in detail, that the localization properties of pseudorandom 
tight-binding models are similar to those of truly random ones, exhibiting 
Anderson exponential localizationJ 32~ It then follows that the QE states are 
exponentially localized in L space for generic values of r. 

We shall use the general tight-binding model for the KR introduced by 
Shepelyansky. (29) Briefly, this model is derived as follows. Let u+-(O) denote 

825/27/2-3 
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a QE state with quasienergy co at time t -- _+_ 0. From the simple time evolu- 
tion with (6) one gets: 

u+(O) = e x p [ - i k V ( O ) ]  u-(O), u,7 = exp[ i ( co -  rnZ)] u + (17) 

where u + are the Fourier coefficients (or L representation) of u+-(O). 
Because of the first relation in (17), there exist functions t~ and g, where g 
can  be assumed to be real, such that u+(O)= g(O)exp[ T ikV(O)/2] ~(0). 
Together with the second relation in (17), this gives 

Wrsin[(rn2-co) /2+~]  li,, +~ = 0 (18) 
r =  o c  

where the real numbers W~ and 0(, r are defined by 

W(O)=g(O)exp[-ikV(O)/2]= ~ W~exp[i(rO+e~)] (19) 
r =  - - o : 3  

and it is assumed that W ( - 0 )  = W(O). Equation (18) describes a general 
tight-binding model for the KR, with hopping constants Wr. For  generic, 
irrational values of r/re, the term "on 2 in (18) gives rise to pseudorandom 
disorder,(28.3~ which may lead to Anderson-like exponential localization of 
~i, in n. We shall restrict our attention from now on to the standard poten- 
tial V(O)= cos(0) with the simple choice g =  1. From (19) one finds in this 
case that Wr=J~(k/2), a Bessel function, and ~ = - ~ r / 2 .  Using relation 
(10), one then obtains the corresponding tight-binding model for the TKR: 

Jr(k/2) s in{[ (2n+r)n2-co+2nr] /4}  zi,,+r = 0 (20) 
r ~  - - o o  

where the quantities co and ~i n now refer to the TKR. Let us recall how the 
asymptotic localization length ~ can be calculated from such tight-binding 
rnodels.C29, 3o) Since the Bessel function J~(k/2) decays faster than exponen- 
tially for [r I > k/2, ~2v) it is reasonable to approximate (20) by restricting r 
to the finite range Ir[ ~<N, for sufficiently large N. The truncated form of 
Eq. (20) can be easily written as a transfer-matrix problem ~29' 3o) 

as+, =F~.a, (21) 

where at is the 2N-dimensional vector with components a~r)=ff �9 - - s  - - s  r ~  

r = - N + 1,..., N, and F,  is a 2N x 2N symplectic matrix. One may interpret 
(21) as a map describing a Hamiltonian dynamical system with N degrees 



Limited Sensitivity to Analyticity 163 

of freedom. (4) The vector a 0 is mapped into an, for arbitrary n > 0, by the 
product matrix 

A =Fn_l_F' 2. . .17 0 (22) 

Since the matrix (22) is, obviously, symplectic, its eigenvalues 2(n) come in 
N reciprocal pairs [2r(n), 2 r l (n ) ] ,  r = 1 ..... N, and we can always assume 
the ordering 1 E 121(n)[ ~< [22(n)1 ~< ... ]2N(n)]. The minimalLyapunov expo- 
nent for the map (21), 

yN= lim l l n  12,(n)l (23) 
n ~ o o n  

determines then an "Nth-order approximation" ~N = 1/yX to ~(29, 30) A key 
observation is, however, that ~N has an exact quantum-dynamical meaning 
per se. 

This can be easily shown by observing that the truncated version of 
the tight-binding model (20) is exactly equivalent to the dynamical 
problem (KR or TKR) with a potential VN(O) replacing V(O) = cos(0). The 
potential VN(0) can be easily determined from the truncated version of 
Eq. (19) in our case: 

WN( O ) = gN( O) exp[ --ikVv(O)/2] = 
N 

E Jr(k~ 2) eir(O--~r/2) ( 2 4 )  

r= N 

Solving Eq. (24) for VN(O), we obtain 

N 2 . [ E~ = N J~(k/2) sm(rO-- rzc/2) 1 
arctan r / 

VN(O) = --lc L z x =  _ N Jr(k~ 2) cos(r0 -- r~/21J 
(25) 

It is then clear that ~)N in (23) is the half-width of the strip of analyticity 
of the QE states (Fourier-series representation) for the potential (25), and 
~N = 1 / y N  is the localization length. 

In the limit z-+0,  ~N~{N.  0, where ~N.0 is the QAR-localization 
length for (25). As in the case of the potential (15), it can be shown (24) that 
{N, o = 1/7~v, O, where ~X. 0 is the half-width of the strip of analyticity of 
VN(O) (Fourier-series representation) or the smallest distance of a pole 00 
of V'N(O) from the real 0 axis. Here 00 is a solution of the equation (24) 

N 

E Jr(k~2) eir(~176 ~ r / 2 ) = 0  (26) 
r =  - -N  
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Fig. 2. Half-width 7~v.0 of the strip of analyticity of the potential (25) for 
k = 20 (solid line) and k = 50 (dashed line), obtained by solving Eq. (26). 

Figure 2 shows 7N, o as a function of  N for k = 20 and k = 50, obtained by 
solving the exact equat ion (26) up to N =  50. After an "oscillation" trans- 
ient in the interval N < k/2,  7:v. o appears to increase monotonica l ly  wi thout  
bounds.  In fact, one must  have ?N. 0 ~ oo as N ~ oo since in this limit one 
recovers the original, un t runca ted  model  (20) for V( O) = cos( 0), which is 
analytic over the entire complex plane (7 = oo). It is actually no t  hard  to 
show that  l i m u ~  ~ V'x(O)= V ' ( 0 ) = - s i n ( 0 ) .  We thus see that the trun- 
cated models  define in a natural  way a sequence of  potentials VN(O) whose 
analyticity domains  increase wi thout  bounds  with N. 

Given this, we have performed an accurate numerical  study of  ?:v as 
a function of  N for several values of  r ~ 0. We have calculated ~U from (23) 
using the well-known method  (4, 29, 30) for determining the L y a p u n o v  spectra 
of  products  of  matrices such as (22). The method  is based on direct 
application of  the map  (21) a large number  n = n . . . .  of  times, such that  for 
n > n . . . .  the matrices Fn can be considered as random. This randomness  
should be realized to some extent by the p seudorandom te rm 72n2/4 in (20) 
if r [ ( n  + 1) 2 - n 2 ] / 4  ~ 27c, or  n = n . . . .  ~ 4rc/r. In  practice, it was sufficient 
to use nmax~< 106 even for values of  r as small as 5 x 10 7. This is 
demonst ra ted  in Fig. 3, where we plot  the quant i ty  of  interest, p N ( n ) =  
n -11n 12~(n)1 (solid line), for N = 6 ,  k =  10, and r = 5  x l0 -7. Also plot ted 
are the same quant i ty  for the K R  tight-binding model  [i.e., the original 
model  (18) with Irl ~<6-truncation] (dot-dashed line) and the value of  
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Fig. 3. )~N(n) = n  1 In [21(n)1 [see (23)] for N =  6, k = 10, and ~ = 5 x 10 7 in 
the case of the TKR model (20) (solid line) and in the case of the KR model 
(18) (dot-dashed line). The dashed straight line corresponds to the value of 
~)N 6,0 =0.2759 from Eq. (26). 

~N=6,0 from Eq. (26) (dashed line). It is clear from Fig. 3 that ~ N ( n )  c o n -  

verges very fast to its limit value 7N, which is close from below to Yu, 0- The 
fact that yN(n) for the KR (dot-dashed line) appears to converge to the 
same limit value (but much more slowly) suggests that also in the KR case 
the asymptotic localization length 7:v ~ 7N. 0 as ~--* 0. At the moment, 
however, we are unable to prove this as in the TKR case. We notice that 
the regime of small T in the KR corresponds to the neighborhood of the 
fundamental QR (see Sec. 2), where the ballistic motion manifests itself in 
the fact that the QE states are extended over a large interval of n, 
I n -no [  <fi>> 1, and the asymptotic exponential localization is observed 
only for In -n0 [  >/~ .  (28) This is reflected in the small value of the "local" 
inverse localization length ~ N ( n )  for small n in Fig. 3. On the other hand, 
the much faster convergence of ~ u ( n )  in the TKR case indicates that the 
initial localization profile of the QE states is well approximated by the 
asymptotic QAR-localization. 

The final results for ~N are shown in Figs. 4-6, corresponding to 
k = 5, 10, 20. In each figure, the curve of 7~v is plotted for 15 values of ~. 
For  k = 5  (Fig. 4), 2 x 1 0  6~<z~<4, and the values o f ~  for k = 1 0  and 
k = 2 0  (Figs. 5 and 6) are, respectively, 1/2 and 1/4 of those for k- -  5. Thus, 
the different curves are associated with the same values of K = 2Tk in all the 
three figures, and the most "classical" case (smallest r's) is that of k =  20 
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Fig. 4. Solid lines: minimal Lyapunov exponent 7N [see (23)], associated 
with truncations of the TKR model (20) for k =  5 and t5 values of 
~ = 2 •  6 , 2 x 1 0  5 , 2 •  4 , 2 •  3 ,0 .02,0.04,0.1 ,0 .2 ,0 .25,0.3 ,0 .35,  
0.4, 0.5, 2.0, 4.0, in order of  the descending curves. The dashed line is the 
curve of  7N, o for k = 5 (see Fig. 2). 
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Fig. 5. Similar to Fig. 4, but  for k = 1 0  and v = 1 0  6 10 5, 10 4, 10 3, 
10 2, 0.02, 0.05, 0.1, 0.12"5, '0.15, 0.175, 0.2, '0.25, 1.0, 2.0, in order of the des- 
,eending curves a't N = 15. 



Limited Sensitivity to Analyticity 

0.5 

167 

0.4 

0.3 

0.2 

0.1 

0.0 
0.0 4.0 8.0 12.0 16.0 20.0 

N 
Fig. 6. Similar to Fig. 4, but for k = 2 0  and z=0.5  x 10 6, 0.5x 10 -5 , 
0.5 x 10 4, 0.5 x 10 3, 0.005, 0.01, 0.025, 0.05, 0.0625, 0.075, 0.0875, 0.1, 
0.125, 0.5, 1.0, in order of the descending curves. 

(Fig. 6). We also plot in each figure the curve for Y~v. 0 (dashed line), 
obtained by solving the exact equation (26). It is important to remark here 
that for T not too small the results in Figs. 4~6 were found to be almost 
identical to the corresponding ones in the KR, obtained by using the trun- 
cations of the original model (18), instead of (20). Thus, Figs. 4-6 describe, 
essentially, also the KR case. 

As expected, for r sufficiently small 7N is well approximated by 7~v, 0. 
As T is increased at fixed N (thus increasing the level of chaos, K =  2Tk), 
7~v generally decreases monotonically. This phenomenon is completely 
analogous to the decrease of the domain of analyticity of the golden-mean 
torus in the KR as K approaches Kc from below (see Introduction). In a 
future work, (33) we plan to investigate the precise relation between ~)N and 
the half-width of the strip of analyticity of KAM tori for (25). These two 
quantities are expected to coincide in the semiclassical limit ( ~ 0  at 
fixed K). 

We notice that for values of z corresponding to K ~> 2.5 in all the three 
figures, ~N appears to "saturate," i.e., to be almost N-independent for N 
sufficiently large. This saturation effect is most pronounced in the strong- 
chaos regime (K>> K~.), where ~)N becomes essentially independent of N. The 
saturation value can be identified, of course, with the value of 7 for V(O)  = 

cos(0), 7o~. Shepelyansky (29) found that in a semiclassical regime (small ~) 
of global chaos (K>Kc)  in the KR the localization length ~ = 1/7o ~ 
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satisfies the following approximate relation (in our notation and in units 
such that h--- 1 ): 

D(K) 
~ ~ 8r 2 (27) 

where D(K) is the classical chaotic diffusion coefficient for the KR: 

( (ps-po)  2) D(K) = lira (28) 

Here Ps = TL,/I (see Introduction) and ( ) denotes average over an 
ensemble of initial conditions {(0o, Po)}. The main condition for the 
validity of relation (27) is ~ > k. ~29) Using ~ = K/(2k) in (27), we see that 
at fixed K >  Kc this condition is satisfied provided 

2K z 
k > k0 - (29) 

D(K) 

Notice that k 0 increases without bounds as K-~ Kc[ D( K) ---, 0]. Assuming 
the general and exact validity of relation (27) with (29) in the semiclassical 
limit (T --* 0 or k ~ c~ at fixed K), it follows immediately that ~ ~ is simply 
proportional to T 2 in this limit. Thus, for K arbitrarily close to K C from 
above, the domain of analyticity of the QE states shrinks to zero in the 
semiclassical limit. This fully agrees with the fact that the domain of 
analyticity of a golden-mean torus or cantorus for K>~K C is zero (see 
Introduction). 

The two phenomena above, i.e., the decrease of ~N as T (or  K)  is 
increased and the saturation of ~N as N is increased (for K >  Kc) may be 
viewed as particular aspects of a more general scenario, which is well 
illustrated by Figs. 4-6. We already know that the region of analyticity NN 
of VN(O) increases with N for N sufficiently large, N >  k/2 (see Fig. 2), and 
that 2~; N is the width of the strip of analyticity NQE, N of the QE states for 
VN(O ). For infinitesimal r, NOe, N=~N, SO that an increase in the 
analyticity of the potential results in a corresponding increase of the 
analyticity of the QE states. For  finite z, however, the increase of ~Qe, N 
with N is slower than that of ~/N. In the global-chaos regime ( K >  Kc), the 
increase of ~ N  leads to an increase of ~QE, N only up to N,-~ N*, where )iN 
saturates to a value ~)'U.. Both N* and YN* decrease as K is increased, so 
that the influence of the analyticity of VN(O) on the analyticity of the QE 
states is gradually reduced. The extreme case corresponds to the strong- 
chaos regime (K~>K~.). Here the increase of NN does not lead to any 
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increase in NeE, N, and 7N ~ 7 o  is totally determined by the diffusion coef- 
ficient D, as in relation (27). This case of dynamical localization is thus 
completely different in nature from QAR-localization, which is associated 
with a classically integrable limit. 

We may therefore conclude by saying that the transition between these 
two kinds of quantum localization takes place via a gradual reduction of the 
influence of the analyticity of the system on that of the eigenstates, as the 
level of chaos is increased. This is a vivid manifestation of quantum chaos. 

Dedication. We would like to dedicate this work to our teacher, 
colleague, and friend, Prof. Lawrence P. Horwitz, on the occasion of his 
65th birthday. 
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