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ABSTRACT: We extend our previous study of surface tension
of ionic solutions and apply it to acids (and salts) with strong
ion−surface interactions, as described by a single adhesivity
parameter for the ionic species interacting with the interface.
We derive the appropriate nonlinear boundary condition with
an ef fective surface charge due to the adsorption of ions from
the bulk onto the interface. The calculation is done using the
loop-expansion technique, where the zero loop (mean field)
corresponds of the full nonlinear Poisson−Boltzmann equation. The surface tension is obtained analytically to one-loop order,
where the mean-field contribution is a modification of the Poisson−Boltzmann surface tension and the one-loop contribution
gives a generalization of the Onsager−Samaras result. Adhesivity significantly affects both contributions to the surface tension, as
can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available
experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it
identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

I. INTRODUCTION

Solubilization of simple salts in aqueous solutions increases, in
general, its surface tension.1,2 The theoretical foundation of this
phenomenon goes back almost a century ago to Wagner,3 who
suggested an explanation based on image charges (due to the
water/air dielectric discontinuity). Onsager and Samaras (OS),
in their tour de force paper, combined this idea with the Debye−
Hückel (DH)4 theory and calculated the dependence of surface
tension on salt concentration.5 While being overall successful
under low salinity conditions, the OS prediction implies the
same increment of the surface tension for all monovalent salts,
a finding that is at odds with many well-explored physical
situations.6 Moreover, some simple monovalent acids and bases
not only show a quantitative discrepancy with the OS result but
even act contrary to its qualitative features. These acids and
bases may reduce the surface tension even in the low-salinity
limit where the OS result is supposed to be universally valid.
A vast number of attempts that go beyond the OS theory

have been proposed and incorporate ion-specific effects.6 They
are related to a much broader behavior of solutes in salt
solutions observed already in the late 19th century by
Hofmeister and co-workers,7 known nowadays as the
Hofmeister series. This series emerges in numerous chemical
and biological systems,8−10 including, but not limited to, forces
between mica or silica surfaces11−13 as well as the surface
tension of electrolyte solutions.14,15

Over the years, different theoretical approaches were devised
to incorporate these experimental findings into a generalized
theoretical framework. Specifically, in order to incorporate ion-
specific interactions, the well-known Poisson−Boltzmann (PB)

theory was often taken as a point of departure. Such an
approach, pioneered by Ninham and co-workers,16 was later
extended by Levin and co-workers.17 The Boltzmann weight
factor was modified by adding in an ad hoc manner different
types of ion-specific interactions (assumed to be additive), such
as dispersion interactions,18−20 image-charge interaction, the
Stern exclusion layer, ionic cavitation energy, and ionic
polarizability.17 Detailed explicit solvent-atomistic molecular-
dynamics (MD) simulations were also invoked to derive the
nonelectrostatic, ion-specific potentials of mean force in order
to combine the PB equation with the ionic-specific
interaction.21,22 (See also the pertinent discussion in refs 23
and 24). Similar lines of thought were used to investigate ion
density and partitioning close to interfaces25,26 and the surface
tension behavior of complicated dicarboxylic and hydroxycar-
boxylic acids.27

The above-mentioned modification of the Boltzmann weight
factor was used to calculate numerically the surface tension of
electrolytes at the water/air interface and with the addition of
dispersion forces also at the oil/water interface.28 Similarly, the
surface tension of acids29 was computed by taking into account
the preferential adsorption of hydrogen (in the form of
hydronium ions) to the interface. We note that whereas these
additional interaction terms may represent real physical
mechanisms underlying the specific ion−surface interactions,
these terms are, in general, nonadditive.6
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In our previous works,23,24 we introduced a self-consistent
phenomenological approach that describes specific ion−surface
interactions in the form of surface coupling terms in the free
energy. Furthermore, on a formal level, we argued that the
original OS result is, in fact, fluctuational in nature, and it is
necessary to extend the PB formalism to account for
fluctuations. This conceptual and formal development allowed
us to derive an analytical theory that reunites the OS result with
the ionic specificity of the Hofmeister series. Our results
demonstrate that simple specific ion−surface interactions can
explain the appearance of the Hofmeister series.
Using the one-loop expansion beyond the linearized

Poisson−Boltzmann theory (the DH theory), we have
developed a consistent theory23,24 of the surface tension
dependence on salinity that is in general agreement with
experiment and also well reproduces the reverse Hofmeister
series. Because this linearized theory is valid only for weak ion−
surface interactions, it is not fully applicable to the case of
strongly adhering ions such as some acids. It is exactly this issue
that is addressed in the present work, where we use a more
general approach based on a full nonlinear theory that is
applicable for both weak and strong ion−surface interactions.
The extension to strong surface−ion interactions as para-

metrized by the phenomenological adhesivity allows us to derive
the surface tension of acids and other strongly adhering ions.
Our theory can successfully fit the experimentally determined
surface tension in a wide range of different salts or acids with
moderate adhesivity (up to a concentration of ∼1 M) and acids
with high adhesivity (up to a concentration of ∼0.4 M) and is
also in accord with the reverse Hofmeister series for acids.
Nevertheless, in some regimes, such as high ion concentration,
our calculations that incorporate ion specificity through a single
phenomenological parameter (adhesivity) fail. They would have
to be modified in order to take into account steric effects that
are not included in the standard PB formulation. We discuss
the failings of the theory and identify several possible venues of
improvement.
The acids we considered in this work are assumed to be

strong. This means that for a simple monovalent acid
dissociated in water,

⇆ ++ −HX H X (1)

the pK of the acid dissociation reaction is smaller than roughly
−1.5. In this case, the HX acid is always fully dissociated,
irrespective of all of the other parameters, and the H+

concentration is the same as the bulk acid concentration,
[H+] = nb. On the contrary, for weak acids, the amount of H+ is
smaller than nb and depends on nb as well as on the acid pK.
Treating weak acids is rather a simple extension of the strong
acid case, addressed in this article, if one takes the pK value to
be constant throughout the solution.30

The outline of the article is as follows. In the next section, we
present our model (Section II) and calculate the mean-field
electrostatic potential and the thermodynamic grand canonical
potential (Section II.A), followed by the one-loop correction to
the grand potential (Section II.B). Section III includes the
surface tension results up to one-loop order, and in Section IV,
we compare these analytical expressions with experiments.
Finally, we draw our conclusions in Section V. Appendix A
extends our model to include both adhesivity and fixed surface
charges, and in Appendix B, we compute the surface tension for
strong surface potential and negative anion adhesivity.

II. THE MODEL

The general problem we consider is the same as in our previous
work,24 composed of aqueous and air phases, as is depicted
schematically in Figure 1. Because the full details can be found
in section II of ref 24, only some pertinent highlights of the
model are addressed.

We consider a symmetric monovalent (1:1) electrolyte
solution of bulk concentration nb. The aqueous phase (water)
volume V = AL has a cross-section A and an arbitrary
macroscopic length L → ∞, with the dividing surface between
the aqueous and the air phases at z = 0. The two phases are
taken as two continuum media with uniform dielectric
constants, εw and εa, respectively. We explicitly assume that
the ions are confined in the aqueous phase because the large
electrostatic self-energy penalty for placing an ion in a low
dielectric medium (air or oil).
The model Hamiltonian is

∑ ∑= − + ±H q q u
e

Nu V zr r
1
2

( , )
2

( )
i j

i j i j
i

i
,

2

b
(2)

The first term is the usual Coloumbic interaction, where the
summation is carried out over all of the ions in solution, qi = ±e
represents the charges of monovalent cations and anions,
respectively, and N is the total number of ions in the system.
The second term includes the diverging self-energy, ub, and the
last term takes into account the nonelectrostatic ion−surface
potential, V±(z). The potential V± is short-ranged and confined
to the proximal layer next to the dividing surface, z ∈ [0, a].
The length a is a microscopic length scale corresponding to the
average ionic size or, equivalently, to the minimal distance of
approach between ions. (See refs 17 and 24 for justification.)
The grand canonical partition function defined by the above

Hamiltonian, eq 2, can be derived in a field theoretical form,

∫π

β
ϕΞ ≡

′
ϕ

−

−
−

u r r

(2 )

det[ ( , )]
e

N
S r

/2

1
[ ( )]

(3)

where β = 1/kBT and S[ϕ(r)] plays the role of a field action,

Figure 1. Schematic setup of the system. The aqueous and air phases
have the same longitudinal extension, L, which is taken to be
macroscopic, L → ∞. A small layer proximal to the dividing surface,
0 < z < a, exists inside the aqueous phase. Within this layer, the anions
and cations interaction with the interface at z = 0 is modeled by a
nonelectrostatic potential, V±(z). This potential is zero outside the
proximal layer.
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The derivation of the above equation employs the form of the

inverse Coulomb kernel ε δ′ = − ∇· ∇ − ′
π

−u r r r r r( , ) [ ( ) ( )]1 1
4

and the electroneutrality condition that requires λ+ = λ− ≡ λ.
The fugacities are defined via the chemical potentials μ±, where
the ion bulk self-energy, ub, is included in their definition,

λ βμ
ε

=±
−

±
⎜ ⎟
⎛
⎝

⎞
⎠a uexp( ) exp

2
w3

B b (5)

with B = e2/εwkBT being the Bjerrum length. The grand
potential, Ω = −kBT ln Ξ, can be written to first order in a
systematic loop expansion, yielding

β β β

ψ

Ω ≃ Ω + Ω

= + ′S H r r[ ]
1
2

Tr ln ( , )2

MF 1L

(6)

where the mean-field (MF) term, ΩMF, that depends on the MF
electrostatic potential, ψ(r), is derived from the saddle-point
equation

δ ϕ
δϕ

=
ϕ ψ=

S r
r

[ ( )]
( )

0
i (7)

and the Hessian, related to Ω1L, is defined as

δ
δϕ δϕ

′ =
′

ϕ ψ=

H
S

r r
r r

( , )
( ) ( )2

2

i (8)

Assuming that the ion−surface nonelectrostatic potential
(Figure 1) is shorter-ranged than any other interaction, we can
take the a → 0 limit in the continuum theory. Then, the field
action S can be decomposed into separate volume (V) and
surface (S) terms

∫

∫

ϕ βε
π

ϕ λ β ϕ

λ χ χ

= ∇ −

− +β ϕ β ϕ
+
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V
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(9)

where we introduced a phenomenological surface interaction
strength, χ±, in order to describe the specific short-range
interaction between ions and the surface. The χ± parameter is
explicitly connected to another surface interaction parameter,
α±, by

χ ≡ −βα
±

− ±a(e 1) (10)

where α±, also known as adhesivity, is related to the average of
the microscopic surface potential,

∫=βα β− − −± ±a ze d e
a

V z1

0

( )
(11)

We note that the above decomposition into bulk and surface
terms enforces the partitioning of ions into bulk and surface-

residing. Thus, one also needs to introduce a specific surface
fugacity, λs, that is different from the bulk one,

λ λ ε= −u uexp[ ( )/2]s w B s b

This surface fugacity includes the ion self-energy at the surface,
us ≠ ub, as elaborated on in section II.B of ref 31.
The ion−surface properties as introduced above are

completely codified by the χ± parameter (eq 10). In the case
of either repulsive or small attractive ion−surface interactions,
χ± is small, and only terms of order χ±( ) need to be
considered. This limit consistently leads to an effective Debye−
Hückel (DH) theory as was elaborated on in great detail in refs
23 and 24. However, for strong ion−surface interactions, χ± can
be finite, and one should generally keep all orders of χ±. This
further implies that the electrostatic potential cannot be
linearized. Rather, one needs to employ the full nonlinear PB
theory.
The one-loop grand potential (eq 6) is the starting point for

our calculation. It constitutes a mean-field term and a
fluctuation term. The mean-field term, ΩMF, is derived by
substituting the field action (eq 9) into eq 6,

∫
∫

∫
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β ψ

χ χ

Ω = = − ∇

−

− +β ψ β ψ
+

−
−⎡⎣ ⎤⎦

k TS

n k T e

n k T r

r
r

r

[ ] d
( )
8

[ ]

2 d cosh( )

d e ee e

B
2

b B

b B
2
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s s

(12)

with the surface potential ψs ≡ ψ(z = 0). The MF solution for ψ
is obtained from the saddle point of the bulk part of the field
action. It leads to the standard PB equation, as is shown next.
The fluctuation term, Ω1L, can be calculated by several routes.32

One method is based on the use of the argument principle, and a
second one is based on the generalized Pauli−van Vleck
approach that calculates the functional integral of a general
harmonic kernel. We shall proceed by employing the former
methodology.24

II.A. Mean Field. The MF equation is derived from the
saddle-point of the bulk field action. In planar geometry (Figure
1), this leads to the standard PB equation for ψ(z)

ψ

ψ
π
ε

β ψ

″ = <

″ = >

z z

z
en

e z

( ) 0 0,

( )
8

sinh( ) 0b

w (13)

where ψ′ = dψ/dz, and we have used the translation symmetry
in the transverse (x, y) plane. We also utilized the fact that in
the MF approximation the fugacities are equal to the bulk salt
concentration.24,31

The surface part of the saddle point then gives a
nonconventional boundary condition:

ε ψ ε ψ π χ χ′ − ′ = − −β ψ β ψ
+

−
−+ − en4 ( e e )

e e
w 0 a 0 b

s s (14)

where ψs is the surface potential and ψ′ ±0 represents its left and
right first derivatives at z→ 0. From the above equation, we can
define an ef fective surface charge density, σeff, induced by the
surface potential ψs,

σ ψ χ χ= −β ψ β ψ
+

−
−en( ) ( e e )e e

eff s b
s s (15)

Using the fact that ψ vanishes at z→ ± ∞, we obtain the
usual relations:33
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The parameter 0 ≤ η ≤ 1 is found by substituting ψ from the
above equation into the boundary condition at z = 0 (eq 14). In
addition, we have introduced the standard inverse Debye
length, κ λ π= =− n8D D

1
B b , and assumed that χ χ>+ − ,

implying a positive effective surface charge and a positive
surface potential. For the opposite case of χ χ<+ − , one has
to make the substitution η → −η in eq 16.
Inserting the solution of eq 16 into the boundary condition

(eq 14) yields an equation for η

η η κ χ η η κ χ+ − Δ + − + Δ + =(2 4 ) 6 (2 4 ) 1 04 3
D GC

2
D GC

(17)

where

χ
χ χ
χ χ π χ χ

Δ ≡
+
−

≡
−

+ −

+ − + −n
;

1
2GC

B b (18)

Here, Δχ is a modified (dimensionless) surface interaction
strength (eq 10) and GC plays a similar role as the usual
Gouy−Chapman length.33 Note that the above equation
applies equally to the case χ χ<+ − .
Keeping only linear terms in χ± then leads to the regular

Debye−Hückel (DH) solution. For small enough bias,
χ χ−+ − → 0 we have κD GCΔχ ≫ 1 yielding η ≪ 1, and

one can approximate the PB equation to order η( ) as23

β ψ
χ κ

ψ ψ

=
Δ +

<

= ⩾κ−

e z

z z

2
2

0

( ) e 0z

s
D GC

s
D
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If one furthermore assumes Δχ≪ κD GC , which corresponds to
linearization in χ±, then the DH solution is recovered24

β ψ
κ

= −e
2

s
D GC (20)

When χ− + χ+ > 0 but either χ− < 0 or χ+ < 0, the
electrostatic potential might be large and further considerations
are required. We assume, without loss of generality, χ χ>+ −
such that the effective surface charge is positive and χ− < 0.
Because χ− < 0, one should keep only terms to order χ−( ).
In Appendix B, we give further details on the complex

expansion to first order in χ− that is used for our fitting
procedure (Section IV). However, in this subsection we only
show the compact results obtained for χ− = 0 (zeroth order in
χ−), which is a good approximation when χ χ≫+ − . Taking
the zeroth order in χ− yields Δχ → 1, GC →1/(2π Bnb χ+), and
eq 17 for η takes a simpler form,

η η κ η κ+ − + + − =(2 3) (2 3) 1 03 2
D GC D GC (21)

The electrostatic potential, ψ(z), is then derived by substituting
η of eq 21 into eq 16. Hereafter, we focus on the case with
χ± > 0, which is equivalent to α± < 0, meaning that both ions
are attracted to the surface.
II.B. One-Loop Correction. In this section, we follow the

one-loop calculation described in ref 24 and will not dwell

much on its details. As discussed above, the one-loop correction
to the grand partition function, Ω1L, can be rewritten with the
help of the argument principle,32,34 converting the discrete sum
of the eigenvalues of the Hessian into the logarithm of the
secular determinant D(k)

∫
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where the integrand depends on the ratio D(k)/Dfree(k) and
Dfree is the reference secular determinant for a free system
without ions. The secular determinant is defined as35

= + Γ Γ−D M N Ldet[ ( ) (0)]1
(23)

with the matrix Γ(z):
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The two functions, h(z) and g(z), are the two independent
solutions of the Hessian eigenvalue equation for zero
eigenvalue,
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The corresponding boundary condition of eq 25 at z = 0 is

ε ε ω∂ = − ∂ = =+ −u z u z u( 0 ) ( 0 ) (0)z zw a (26)

where we define
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Matrices M and N are obtained by writing the boundary
condition in a matrix form (see ref 24), yielding
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Using the expression of the MF potential,

β ψ κ ζ= + −e zcosh( ) 2 coth [ ( )] 1s
2

D

with ζ ≡ −(ln η)/κD, the two independent solutions of eq 25
can be written as36
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where p2 = k2 + κD
2 . By substituting eq 29 into eq 23, it is

straightforward to compute the secular determinant in the
thermodynamical limit, L → ∞. Using the limiting behaviors
g(L) ≃ g′(L) ≃ 0, h(L) ≃ exp(pL)(1 − κD/p), and h′(L) ≃
ph(L), we obtain

ω ε ε

ε κ κ ζ

≃ − + +
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ph L

k
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In the DH regime, η≪ 1 and ζ≫ 1. Hence, D(k) reduces to

ω ε ε≃ − + +
⎡
⎣⎢

⎤
⎦⎥D k k p( )

1
2

e pL
a w (31)

and ω reduces to ε κ χ χ++ −( )1
2 w D

2 . This is exactly the DH

result, which has already been obtained in ref 23.

III. SURFACE TENSION

We can apply the formalism that was derived in the previous
section to calculate the excess surface tension, Δγ = γ − γA/W,
which is the excess ionic contribution to the surface tension
with respect to the surface tension between pure water and air,
γA/W. The surface tension can be calculated by using the Gibbs
adsorption isotherm or, equivalently, by taking the difference
between the Helmholtz free energy of an air/water system of
longitudinal extent 2L (Figure 1) and the sum of the Helmholtz
free energies of the two corresponding bulk phases (each of
longitudinal extent L):

γΔ = − −F L F L F L
A

(2 ) ( ) ( )(air) (B)

(32)

The three Helmholtz free energies, F(2L), F(air)(L), and
F(B)(L), have yet to be calculated explicitly.
The definition of the Helmholtz free energy is

μ μ= Ω + +F N Ns s (33)

where the number of ions on the surface is Ns = −λs ∂Ω/∂λs.
Because F is independent of the fugacities,24,37 the MF value
(zeroth-loop order) of the fugacities, λ = λs = nb, can be used.
For convenience, we separate the volume and surface

contributions of the Helmholtz free energy, F = FV + FA. The
volume part, FV, is written to one-loop order24 using eqs 5 and
33:

π
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2 2
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Here, we introduced the UV cutoff πΛ = a2 / , where a is the
average minimal distance of approach between ions. This cutoff
is commonly used to avoid spurious divergences arising when
ions are assumed to be pointlike. (For further details, see ref
31.) In addition, we take the Λ→∞ limit and neglect all terms

of order Λ−( )1 .
The first two terms in FV are the MF grand potential (eq 12)

and the usual MF entropy contribution. The third term is the
well-known DH volume fluctuation term,4 and the fourth and
fifth terms are the bulk self-energies of the ions (diverging with
the UV cutoff), which cancel each other exactly.
The surface part, FA, is calculated solely from the one-loop

correction

∫π
κ

ε ε

κ κ ζ ω ε ε

ε κ κ ζ

=
−

+

+ + + +

+ − −

Λ ⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥

F
A

k T
k k

p
k

p k p

e N u
A

4
d ln

( )

ln [ coth( )][ ]

(coth ( ) 1)
1
2

A B

0

D
3

w a

D D a w

w D
2 2

D

2
s s

(35)

where the last term in the above equation is proportional to the
ion self-energy on the surface, us, which diverges with the
cutoff. This last term cancels with the leading divergence of the
integral at the Λ → ∞ limit (just like the bulk one).
The bulk electrolyte free energy, F(B), needed for eq 32, is

obtained from eqs 34 and 35 in the same way as described in
Section IV of ref 24. In addition, the Helmholtz free energy of
the air phase is equal to zero, F(air)(L) = 0, because there are no
ions in the air phase.

III.A. Mean Field. Using the results for the three free-
energies, we calculate the surface tension to one-loop order,
Δγ ≃ ΔγMF + Δγ1L. The mean-field (MF) part of the surface
tension is derived using ψ(z) of eqs 16 and 17,
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In the aqueous phase z > 0, the first integration of eq 16 gives

β ψ κ β ψ′ = −e e2 sinh( /2)D (37)

whereas for z < 0 (air), ψ′ = 0. By inserting ψ′(z) into eq 36
and integrating, we obtain the MF surface tension
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(38)

This expression is similar to eq 3.16 of ref 38, where the surface
tension was calculated for charged surfactants adsorbing onto
the air/water interface. It is worth noting that by taking χ± → 0
the surface potential ψs vanishes and consequently the entire
MF contribution to the surface tension is zero. This leads back
to the OS result, which is a fluctuation term.

III.B. One-Loop Correction. The one-loop correction to
the surface tension takes the following form:

∫γ
π

κ
ε ε

ε κ κ ζ

κ κ ζ ω ε ε

κ κ ζ κ κ ζ

π
ω

ε ε

Δ =
−
+

×

+ + + +

× + +

− Λ
+

Λ

−

−
−

⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎤
⎦⎥

k T
k k

p
k

p k p

p p

k T

8
d ln

( )

sinh ( )

[ coth( )][ ]

coth( )
1
2

sinh ( )

4

B

0

D
3

w a
2

w D
2 2

D

D D a w

2

2
D D D

2 2
D

1

B

w a

1L

(39)

Langmuir Article

DOI: 10.1021/acs.langmuir.6b03186
Langmuir 2017, 33, 34−44

38

http://dx.doi.org/10.1021/acs.langmuir.6b03186


Taking the limit of η ≪ 1 (or ζ = −(ln η)/κD ≫ 1) gives the
linearized fluctuation contribution as obtained in refs 23 and 24
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where only Λ-dependent terms are shown. The first term in eq
40 is the well-known OS result5,39,40 and it varies as ∼κD2
ln(κD B). The second term is a correction due to the ion
minimal distance of approach, with the UV cutoff being

πΛ = a2 / , and the third term is a correction related to the
adhesivity parameters through ω(α±) (eq 27). For βα± ≪ 1,
the third term is negligible, and as expected, the derived surface
tension agrees well with the OS result.
Finally, we note that the surface tension Δγ contains the

dependence on the phenomenological adhesivity parameter at
the mean-field level as well as at the one-loop fluctuation level.
This offers a desired generalization of the Onsager−Samaras
limit but also introduces severe constraints on this parameter
when used to fit the experimental data. This point is quite
essential because it shows that even the phenomenological
treatment of ion adsorption via adhesivity enters the theory at
multiple, interconnected levels. The mean field terms together
with the fluctuation corrections are needed in order to describe
the data consistently and clearly delineate our theory from plain
fitting routines or plain phenomenological ansatz.

IV. COMPARISON WITH EXPERIMENTS
We compare the numerical results for the surface tension
(computed from the one-loop fluctuation correction of the MF
results), Δγ = ΔγMF + Δγ1L, with experimental data. For the
case where χ± > 0, we use eq 38 for ΔγMF and eq 39 for Δγ1L.
On the other hand, if either χ+ or χ− is negative, we expand to
first order in the negative χ, as shown in Appendix B and
explained in the paragraph after eq 11. Then, the MF term,
ΔγMF, is derived from eq B3, and Δγ1L is obtained from eqs
B6−B8. For simplicity, we take the range of the ion-specific
surface potential to be equal to a, the average minimal distance
between cations and anions in water, yielding a = r+

hyd + r−
hyd,

with the hydrated radii taken from the literature.41,42

Our fitting procedure is centered on obtaining the best-fitted
values for the phenomenological adhesivities, α±. These
adhesivities are extracted from one of the fits and uniquely
determine the adhesivity value of the specific ion/interface
system for the other fits. This procedure allows us to make
predictions for other salt solutions. Note that the surface
tension is symmetric with respect to exchanging the role of
cations and anions. This means that the two-parameter fit with
α± will always give two equivalent results, α+ ↔ α−. An
alternative fitting procedure was used in ref 24 for a different
case in which both adhesivities are small, βα± ≪ 1. Then,
α* = α− + α+ can be introduced as a single fit parameter
yielding almost equivalent results.
In Figure 2, we compare the analytical results for the surface

tension of acids at the air/water interface with experimental
data. The experimental data show that the surface tension
decreases or slightly increases with ionic concentration. This
indicates a relatively strong ion−surface interaction that cannot
be treated within the DH linear theory and is consistent with

our starting point. The three HX acids,2 with X = Cl−, NO3
−, or

ClO4
−, and a salt with an oxy anion, NaClO4,

29,43 are used in
the comparison. We fit their surface tension curves with αNa,
αCl, and αNO3

, which were derived in our previous work.24

In the fitting procedure, we first fit the surface tension of HCl
and NaClO4 in order to find αH and αClO4

. This allows us to
predict the surface tension of HNO3 and HClO4. The ionic
radii for all ions except hydrogen are taken from ref 41, and the
hydrogen effective radius in water is taken from ref 42. (The
effective hydrogen radius includes its various complexations

Figure 2. Comparison of the fitted surface tension, Δγ, with
experiments as a function of salt concentration, nb, at the air/water
interface. Experimental data are taken from ref 2 for acids HCl, HNO3,
and HClO4 and from refs 29 and 43 for NaClO4. The adhesivity values
of αH and αClO4

are found by first fitting HCl and NaClO4, while taking
αCl = 0.09kBT and αNa = 0.11kBT.

24 We then use the values of αH and
αClO4

and the previously obtained αNO3
= −0.05kBT

24 to plot our

predictions for the surface tension of HClO4 and HNO3. The fitted
adhesivity values are shown in Table 1. Other parameters are
T = 300 K, εw = 80 (water), and εa = 1 (air).

Table 1. Fitted Values of the Phenomenological Surface
Interaction Strength, χ± (in Å), and the Corresponding
Microscopic Adhesivity, α± (in kBT), at the Air/Water and
Dodecane/Water Interfacesa

a χ− χ+ α− α+

air/water
HCl 4.32 −0.35 4.34 0.09 −0.70
HNO3 4.35 0.21 4.37 −0.05 −0.70
HClO4 4.38 2.43 4.40 −0.44 −0.70
NaClO4 6.96 3.86 −0.73 −0.44 0.11

oil/water
KCl 6.63 1.7 −1.12 −0.23 0.18
KBr 6.61 3.4 −1.12 −0.41 0.18
KI 6.62 8.18 −1.12 −0.80 0.18

aThe α± values are obtained by the procedure elaborated in the text,
including predictions for HClO4 and HNO3. The radii, a (in Å), for all
ions (except H+) are taken from ref 41. The effective H+ radius is taken
from ref 42. Note that all numerical values in the table and throughout
the paper are rounded to two decimal places.
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with water molecules.) The surface tension for NaClO4 and
HCl is in very good agreement with experiments for the entire
concentration range (up to ∼1 M), but for HNO3 and HClO4
it shows a deviation from experiments at high concentrations
(≳0.7 M for HNO3 and ≳0.4 M for HClO4).
To further investigate the source of these deviations, we plot

in Figure 3 three fitting curves for (a) HNO3 and for (b)
HClO4. The first plot is our prediction as seen in Figure 2, the
second uses αH and then fits the best value for αNO3

and αClO4
,

and the third is the “best fit” optimized for both α values. Note
that the two latter fits are not part of our fitting procedure and
are used only to understand the deviations of the theory from
experiments at high concentrations. In the first two fits, we use
αH = −0.70kBT in Table 1. The second curve fits rather well,
certainly better than the prediction of the first curve, and
corresponds to less negative adhesivity values: αNO3

= 0.01kBT

(as opposed to αNO3
= −0.05 kBT) and αClO4

= −0.17kBT (as

opposed to αClO4
= −0.44kBT). The difference in the estimated

adhesivities between the first two fits implies the existence of a
mechanism that will tend to diminish their values, effectively
excluding the ions from the surface. A possible source of this
exclusion can be associated with steric ion−ion repulsion at the
surface. (This exclusion depends on ionic size and precludes
unbound densities of the adsorbed ions in the limit
βα± → −∞, setting an upper bound corresponding to the
close-packing configuration, and is similar to systems with a
charge-regulated boundary condition.33,44)
In addition, our approach successfully applies to other types

of liquid interfaces, such as oil/water. This is demonstrated in
Figure 4, where we compare the calculated surface tension for
the dodecane/water interface with experiments. The fits are
done for three different salts having K+ as their common cation,
and they are in very good agreement with experiments. The
adhesivity values are obtained by first fitting the KI data. Then,
this value of αK = 0.18kBT is used in order to fit the surface
tension of the two homologous salts, KBr and KCl. Notice that
the adhesivity values for KCl and KBr are moderate and, thus,
the fits to experiments are only slightly improved as compared
to the linearized DH theory of ref 24. However, αI ≃ −0.8kBT

is quite high, and the corresponding fit for KI is greatly
improved when compared to that in ref 24.
Together with the previous results of ref 24, we obtain an

extended reverse Hofmeister series with decreasing adhesivity
strength at the air/water interface: F− > IO3

− > Cl− > BrO3
− >

Br− > ClO3
− > NO3

− > I− > ClO4
−. For cations, the series is

K+ > Na+ > H+. At the oil/water interface as in Figure 4, the
same reversed Hofmeister series emerges with more attractive
ion−surface interactions. This effect is substantially stronger for
the anions and might be connected with the stronger dispersion
forces at the oil/water interface18 or a change in the strength of
hydrogen bonds close to the surface. (See ref 24 for further
discussion.)

V. CONCLUSIONS
Our present work complements previous results obtained for
the surface tension of weakly adhering electrolytes23,24 and
extends them to strong acids, bases, and other ions that
strongly adsorb to the interface. This study is accomplished by
considering the full nonlinear PB theory for mean-field and
one-loop fluctuation corrections, which is valid for any strength
of the ion−surface interaction (the surface adhesivity
parameter, α, in our model). In particular, we were able to
obtain analytically the surface tension up to one-loop order. As
was explained before, the fluctuation correction is paramount to
this endeavor as it generalizes the OS argument, which is itself
fluctuational in nature.23,24

The analytical expressions derived for the surface tension are
applicable to any adhesivity values and reduce to results we
derived previously for small adhesivity asymmetry (α+ ≃ α−).
Nevertheless, we expect that for the extreme case of strong
adhesivities and high salt concentration, other effects such as
ion−ion steric interactions will play a role. Our results for the
surface tension are in accord with the reverse Hofmeister series
at the oil/water interface and extend the series to acids.
It is possible to generalize our model to include the surface

tension of weak acids. Conceptually, the main change will be
that the molarity of H+ is a function of the bulk concentration,
nb, and the pK, [H

+] = f(nb, pK). As written in the Introduction,
this task is rather simple if one takes the pK value to be

Figure 3. Comparison of the calculated surface tension (black circles) with experiments at the air/water interface as a function of ionic
concentration, nb, for HNO3 (a) and HClO4 (b). The predicted black solid line is calculated from the procedure given in the text for αClO4

=

−0.44kBT and αNO3
= −0.05kBT (Table 1). The red dashed line is a one-parameter fit for αClO4

and αNO3
, yielding less negative or even positive

adhesivity values: αClO4
= −0.17kBT and αNO3

= 0.01kBT. For both curves, we use αH = −0.70kBT (Table 1). The third, blue dashed−dotted line is

the “best fit” (two-parameter fit) yielding αH = −1.11kBT and αNO3
= 0.17kBT for HNO3, and αH = −1.57kBT and αClO4

= 0.17kBT for HClO4. Other

parameters are the same as in Figure 2.
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constant throughout the solution.30 However, the correspond-
ing equations that take fully into account the local acid
dissociation reaction are more complex, though imminently
solvable (ref 46). Such a relation will be needed in order to
compute the surface tension as a function of the experimental
controlled molarity of the acid solution, nb.
Furthermore, as already alluded to in the discussion

pertaining to Figure 3, our theory consistently overestimates
the surface tension at larger salt concentrations. A possible
generalization that would address this issue is to incorporate
steric effects either between the ions in the vicinal solution and/
or between the ions already adsorbed onto the surface. This
should follow the general lines elaborated in refs 47 and 48 with
the main consequence of diminishing the crowding of the ions
next to the surface, thus effectively preventing their nonphysical
accumulation leading to an overestimate in the calculated
surface tension. This effect would be furthermore enhanced
when steric exclusion right at the surface itself, and not only in
the vicinal solution, is taken into account, resulting in further
regulation of the effective surface charge along the lines of ref
44. All of these generalizations, while formally feasible, would
introduce additional “fine structure” into our theory. While
enhancing the theory realism when confronted with experi-
ments, it would also preclude a simple identification of the
salient mechanisms responsible for the observed behavior of the
surface tension.
Finally, we note that ion−surface interactions are the core of

the ionic-specific Hofmeister series. This statement is based on
the generality of our model, its natural inclusion of the OS
result, and the very good fit to experimental data. With the
same simple idea and by merely taking into account the ion−
surface specific interactions, we were able to recover the reverse
Hofmeister series and calculate the surface tension for weakly
adsorbed ions at a surface23 or within a proximal layer,24

strongly adsorbed ions or acids (the present work), and ionic
profiles in the vicinity of the interface.31

Although our theory cannot initially predict the value of the
adhesivity parameter, it can describe all of the ion-specific
effects at the interface in terms of this parameter and give
predictions based on previous fittings. Thus, it clearly identifies
it as the main factor in determining the variation of the surface
tension with ionic type, providing a consistent description of
the experimentally observed functional dependence of the
surface tension. In addition, it also provides mechanistic and
microscopic insight into the nature of the phenomenological
parameters that can, in principle, be calculated from a
microscopic ion−surface interaction potential and has full
predictive power in the range of small to medium ion
concentrations (up to ∼0.4 M) for the more adhesive acids
and for higher concentrations (up to ∼1 M) for less adhesive
ions. In the future, we hope that a better understanding of the
behavior of ions at interfaces will rely on more refined models
that will explore the microscopic origin of the adhesivity
parameter, α.

■ APPENDIX A: ADDING EXTERNAL SURFACE
CHARGE

Throughout this work, we considered surfaces that are
characterized by an adhesivity parameter, α, that is responsible
for the ionic profiles in the surface/interface vicinity. Here, we
extend these results and include fixed charge groups of density
σ on the surface. Including σ with the surface adhesivity, α+,
modifies eq 9 into the form

∫
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For simplicity, we consider only the cation adhesivity (χ− = 0)
and assume positive adsorption for the cations such that χ+ > 0.
The MF equation (eq 13) does not change, but the boundary

condition at z = 0 is modified

ε ψ ε ψ π σ σ′ − ′ = − + β ψ−
+ − 4 ( e )e

w 2 0 a 1 0 0
s (A2)

with σ0 = enb χ+. The MF solution (eq 16) depends on η, which
by itself is derived from the boundary condition, eq A2,

η η κ σ η κ σ+ − Δ + + Δ − =σ σ(2 ) (2 ) 1 03 2
D D (A3)

In the above equation, we define Δσ ≡ (3σ0 − σ)/(σ0 + σ) and
σ ≡ e/(2π B|σ0 + σ|), where the latter plays the role of the
Gouy−Chapman length. This is the solution for σ0 + σ > 0,
whereas for σ0 + σ < 0, one has to take η →−η and σ →− σ.
By taking σ = 0, we recover the case of no fixed surface

charges (eq 16) for χ− = 0. On the other hand, if we take χ+ = 0,
one obtains the well-known equation for η for a single charged
surface in contact with an electrolyte:33

η κ η+ − =σ2 1 02
D (A4)

When σ σ+2 ≪ 1, it can be shown that η ≪ 1. Taking only
terms of order η( ) yields
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If both σ and σ0 are small, then κD σ ≫ Δσ and we recover the
DH solution for an effective surface charge:

Figure 4. Comparison of the calculated surface tension with
experimental data from ref 45 as a function of ionic concentration,
nb, at the dodecane/water interface. The three halide/alkaline salts are
KCl, KBr, and KI. The adhesivities values are extracted from first
fitting the KI curve. Then, we use the value of αK = 0.15kBT and fit the
surface tension of the other two salts, KBr and KCl. The fitted
adhesivity values, α±, are shown in Table 1. Other parameters are the
same as in Figure 2, beside the dielectric constant of dodecane, εa = 2.
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The free energies of the bulk and air phases do not change,
and the MF surface tension can be derived as before:
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The addition of fixed surface charge affects the one-loop
correction only via the MF potential. The one-loop surface
tension, Δγ1L, can be derived from eq 39 by taking the MF
potential obtained from eqs 16 and A3.
It is clear that the addition of fixed surface charges affects

only the MF surface tension, hence it can be easily incorporated
into our methodology.

■ APPENDIX B: STRONG SURFACE POTENTIAL WITH
χ− < 0

In this appendix, we compute the surface tension for the case in
which either χ+ or χ− is negative. In such a case, the negative χ
is always on the order of a. Thus, in order to be consistent with
the limit taken in eq 9, one must keep only linear terms of the
negative χ.
Without a loss of generality, we assume that χ χ>+ − , such

that the effective surface charge is positive. In such a case,
having a strong electric potential requires χ χ− +/ ≪ 1. We
write η = η0 + (χ−/χ+)η1, which implies that

ψ ψ χ χ ψ= + − +( / )0 1

and is consistent with the limit a → 0 of eq 9. Using this
expansion in eq 16 gives
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Equation 17 for η takes a simpler form by using Δχ ≃
1 + 2χ−/χ+ and GC ≃ GC

(0) (1+χ−/χ+),
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where GC
(0) ≡ 1/(2π B χ+) .

Substituting the MF potential of eq B1, we write the MF
surface tension (eq 38) to first order in χ−/χ+ as
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In order to expand the one-loop surface tension (eq 39) to
first order in χ−/χ+, we first write
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Expanding eq 39 to first order in χ−/χ+ and writing Δγ1L = Δγ01L
+ (χ−/χ+)Δγ11L, we obtain
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where we defined for convenience two auxiliary variables
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These analytical but rather complex expressions are used in the
calculation of the surface tension throughout the article for the
case in which either χ+ or χ− is negative.
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