
Ions in Mixed Dielectric Solvents: Density Profiles and Osmotic Pressure between Charged
Interfaces

Dan Ben-Yaakov and David Andelman*
Raymond and BeVerly Sackler School of Physics and Astronomy, Tel AViV UniVersity,
Ramat AViV, Tel AViV 69978, Israel

Daniel Harries
Institute of Chemistry and The Fritz Haber Research Center, The Hebrew UniVersity, Jerusalem 91904, Israel

Rudi Podgornik
Department of Theoretical Physics, J. Stefan Institute, and Department of Physics, Faculty of Mathematics and
Physics, UniVersity of Ljubljana, 1000 Ljubljana, SloVenia, and Laboratory of Physical and Structural Biology,
Eunice Kennedy ShriVer National Institute of Child Health and Human DeVelopment, National Institutes of
Health, Bethesda, Maryland 20814-0924

ReceiVed: January 13, 2009; ReVised Manuscript ReceiVed: February 7, 2009

The forces between charged macromolecules, usually given in terms of osmotic pressure, are highly affected
by the intervening ionic solution. While in most theoretical studies the solution is treated as a homogeneous
structureless dielectric medium, recent experimental studies concluded that, for a bathing solution composed
of two solvents (binary mixture), the osmotic pressure between charged macromolecules is affected by the
binary solvent composition. By adding local solvent composition terms to the free energy, we obtain a general
expression for the osmotic pressure, in planar geometry and within the mean-field framework. The added
effect is due to the permeability inhomogeneity and nonelectrostatic short-range interactions between the
ions and solvents (preferential solvation). This effect is mostly pronounced at small distances and leads to a
reduction in the osmotic pressure for macromolecular separations of the order 1-2 nm. Furthermore, it leads
to a depletion of one of the two solvents from the charged macromolecules (modeled as planar interfaces).
Lastly, by comparing the theoretical results with experimental ones, an explanation based on preferential
solvation is offered for recent experiments on the osmotic pressure of DNA solutions.

I. Introduction

The interactions between charged macromolecules immersed
in aqueous solutions are of great importance in biology and
material science. Because of their relevance to colloidal suspen-
sions and biological macromolecules, the forces between
charged objects mediated by electrolytes have been the focus
of numerous studies.1-9 Within the context of the so-called
primitive model, the solvent is modeled as a homogeneous
dielectric medium9-12 affecting the system only through the
dielectric constant that acts to reduce the strength of the
electrostatic field. More recently, theoretical and experimental
approaches, studying interactions between charged macromol-
ecules, have been extended to also treat binary solvent
mixtures.13-16

The thermodynamics of binary solutions is well understood
and has been described in detail in many textbooks.17 However,
there are still open questions concerning the behavior of binary
solutions in the presence of other degrees of freedom, such as
dissolved ions and external electric fields. These additional
couplings are relevant to a broader spectrum of applications,
extending from manipulation of microfluids18-21 to biologically
motivated problems such as protein stability and conformational
changes.22-26 For example, in recent experiments, the transition

of a DNA molecule from elongated coil to compact globule
was found to depend on the addition of another polarizable
solvent to the aqueous solution,27 suggesting that the interaction
between DNA segments is modified by the presence of this
additional solvent.

The effects of adding cosolvents to aqueous solutions of
charged macromolecules can be quite pronounced. In fact, one
of the common ways to precipitate DNA involves adding an
excess amount of ethanol to the aqueous solution, which
counteracts the repulsion between charged DNA strands.4-6 This
effect has been commonly attributed to the change in solution
dielectric constant. However, studies over the past decade
convincingly demonstrated that alcohol changes the disjoining
(i.e., the interaction) pressure between DNA strands to a much
greater extent than would be expected from the direct change
in the dielectric constant. This added effect that goes beyond
changing of the dielectric constant has been explained in terms
of the preferential exclusion of alcohol from the vicinity of
interacting DNA strands.6 These studies further demonstrated
that because alcohol exclusion causes an additional osmotic
pressure difference between the bulk solution and the concen-
trated DNA phase, DNA strands are pushed even closer together.

Two distinct features prevail when trying to model ions
immersed in a binary solvent mixture within the standard
Poisson-Boltzmann (PB) theory. First, the disparity between
the solvent permeabilities leads to a dielectrophoretic force. The
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ensuing force acts on the solution, attracting the high perme-
ability solvent (e.g., water) component toward the charged
macromolecular surface and, at the same time, depleting the
lower permeability one (e.g., alcohol). As a result, the solution
becomes inhomogeneous and a permeability gradient is created
in the vicinity of the charged interface, where the system favors
the higher permeability component that can better screen the
electrostatic field while excluding the low permeability solvent
away from charged interfaces. The second important feature is
the chemical (nonelectrostatic) preference of the ions for one
of the two solvents. The dissolved ions effectively drag with
them a solvation shell preferentially enriched in one of the
solvents, thus repelling the second. When attracted to the
oppositely charged surfaces, the dissolved ions thereby change
the composition of the vicinal solvent. These two effects can
enhance or compensate each other. In this work, we treat only
the case where the two effects act synergistically to mutually
enhance each other.

Previous theoretical works describing the effects of binary
solvent mixtures dealt mainly with systems close to their critical
point. Tsori and Leibler investigated the change in the phase
transition temperature due to dielectric inhomogeneity and
preferential solvation,13 while Onuki and Kitamura investigated
corresponding surface tension and the ionic distribution near
an interface.14-16 To contrast and compare, in the present work,
we focus on binary solution systems in the single phase region
and away from the coexistence region. Moreover, contrary to
previous works, our main interest is the effect of the dielectro-
phoretic force and preferential solvation on the pressure (or
forces) between two equally charged objects, such as a pair of
charged DNA strands.

We model the system by delimiting ourselves to the simple
planar geometry for two interacting macromolecular surfaces.
Some experimental setups apply directly to this geometry and
even for more complex setups, our model captures the essential
physics of coupling between the binary solvents and mobile
ions.

In what follows, we present a model where the ionic densities,
the solvent relative composition, and the electrostatic potential
are all continuous functions of the local position. We derive a
set of coupled differential equations relating the various degrees
of freedom at thermal equilibrium. Furthermore, we derive a
general expression for the local pressure in the form of a
modified contact theorem and provide proof that it is spatially
homogeneous. This allows us to reduce the corresponding
Poisson-Boltzmann equation to a first order differential equa-
tion that greatly simplifies the numerical problem.

Our numerical and analytical results focus on the solution
mixtures where the low permeability solvent (alcohol) has a
small concentration compared to the other solvent (water). First,
we examine the influence of the various parameters on the
composition profiles. We find that the deviation of the solvent
composition profile from its average (bulk) value can lead to
large deviations from the regular Poisson-Boltzmann theory
predictions, especially regarding interactions between charged
macromolecular surfaces. We investigate in detail the pressure
dependence on the interplate separation and its sensitivity to
controllable parameters, such as salt concentration and average
solvent composition. Finally, we show a comparison between
our pressure profiles and the relevant experiment on DNA.6

II. The Model

In the model considered here, ions are immersed in a binary
mixture of two solvents confined between two planar charged

interfaces. The two surfaces carry homogeneous surface charge
densities, σ < 0 (see Figure 1). The model is formulated on a
mean-field level but modifies the regular PB theory in two
important aspects. First, the volume fractions of the two solvents,
φA and φB ) 1 - φA, are allowed to vary spatially. Conse-
quently, the dielectric permeability of the binary mixture is also
a function of the spatial coordinates. In the following, we assume
that the local dielectric response ε(r) is a (linear) compositionally
weighted average of the two permeabilities εA and εB:

or

where we define φ ≡ φB, ε0 ≡ εA, and εr ≡ εA - εB. This linear
interpolation assumption not only is commonly used but also
is supported by experimental evidence.28,29 Note that the
incompressibility condition satisfies φA + φB ) 1, meaning that
the ionic volume fractions are neglected.

Apart from long-range electrostatic interactions between
dissolved ionic species, we also consider the case where short-
range interactions make an important contribution to equilibrium
properties. Consequently, pairwise short-range interactions
between all constituents contribute additional terms to the total
free energy and modify their equilibrium distributions, as will
be elaborated below.

The equilibrium properties are derived within the mean-
field framework. Thermodynamic equilibrium is obtained by
minimizing the (grand canonical) thermodynamic potential,
G ) ∫d3r g(r), leading to a generalized PB equation that
also contains the contribution of short-range interactions. The
force equilibrium leading to interactions between the confin-
ing surfaces is then obtained from the first integral of the
PB equation and can be reduced to a surface-normal term of
the generalized stress tensor evaluated at the bounding
surfaces. The spatial profiles of the two solvents and ions,
as well as the equilibrium forces, can be obtained from a
variational principle of the thermodynamic potential.

Figure 1. Schematic illustration of the model system. The two plates
residing at z ) (D/2 are charged with surface charge density σ < 0.
The two solvents are represented by circles denoted A and B, with
dielectric constants εA and εB < εA, respectively. The counterions and
the high dielectric solvent (εA) are attracted to the plates.

ε(r) ) φA(r)εA + φB(r)εB (1)

ε(r) ) ε0 - φ(r)εr (2)
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A. Free Energy. We write the bulk free energy as a sum of
four terms:

where the free energy density f ) fe + fi + fm + fs and V is the
total volume. The first term is due to electrostatic interactions
between the ionic species mediated by the dielectric medium
and characterized by the spatially inhomogeneous dielectric
function ε(r). For simplicity, the dissolved ions are assumed to
result from a completely dissociated (1:1) monovalent salt. In
this case, the electrostatic term, fe, is given by

where ψ(r) is the electrostatic potential, e is the electron charge,
and n((r) is the number densities (per unit volume) of the
monovalent co- and counterions. Note that the first term
implicitly couples the electric field, E ) -∇ ψ, with the solvent
composition, φ(r), via the spatial dependence of the dielectric
response, ε(r), on local composition as was defined in eq 2.
This is the dielectrophoretic term mentioned previously that
favors a higher local dielectric constant (lower φ(r)) and causes
attraction of water to the charged surface. This is one of the
two sources of the composition inhomogeneity in the model.

The entropy of ion mixing constitutes the second term, fi,
given by

where kB is the Boltzmann constant, T is the temperature, and
a3 is the molecular volume. The third term, fm, accounts for the
binary-mixture free energy given in our model by regular
solution theory:

The first two terms represent the solvent entropy of mixing,
while the third represents the bilinear short-range interactions
between the two solvents. The interaction parameter, �, is
dimensionless (rescaled by kBT). Note that we took the same
molecular volume a3 for both A and B components. In general,
this is not a serious deficiency and can be easily amended, if
necessary.

The fourth term, fs, in the free energy originates from the
preferential interaction of the ions with one of the two solvents
as described in the Introduction. We assume here that this
preference can be described by a bilinear coupling between the
two ion densities n( and the relative solvent composition φ,
which is the lowest order term that accounts for these interac-
tions (higher order correlation terms can be added in a systematic
way). The preferential solvation energy, fs, is then given by

where the dimensionless parameters R( describe the solvation
preference of the ions, defined as the difference between the

solute (free) energies dissolved in the A and B solvents. The
free energy fs corresponds closely to the Gibbs energy of transfer
from one solvent to another, as is described in detail in refs 30
and 31. This bilinear coupling represents a second source of
composition inhomogeneity. Namely, a density profile of the
ions n((r) (a diffusive layer near a charged object) forces a
corresponding solvent profile, φ(r).

To all these bulk terms, one must add a surface term,
describing the electrostatic interactions between charged solutes
and confining charged interfaces. This surface term is given by

where ψs is the electrostatic potential evaluated at the bounding
surfaces and depends on the surface charge density σ (charged
groups per unit area) and surface area A. Note that the charged
surface is described by a uniform charge density, σ. In a more
refined model, nonelectrostatic interactions, such as preferential
adsorption of the two solvents, and finite ion effects could be
included as well.

The total free energy is then written as a sum of the bulk
and surface terms

In the grand-canonical ensemble, the corresponding thermody-
namic potential is given by

where µ( and µφ are the dimensionless chemical potentials
coupled to the ionic densities n( and the relative solvent
composition φ, respectively.

In thermodynamic equilibrium, the spatial profile of the
various degrees of freedom characterizing the system is obtained
by deriving the appropriate Euler-Lagrange (EL) equations via
a variation principle of the thermodynamic potential, eq 10. The
EL equations are then reduced to four coupled differential
equations for the four degrees of freedom, ψ(r), n((r), and φ(r):

At the charged interfaces, an additional equation stems from
the surface term of eq 9

∫V
d3r[ fe(r) + fi(r) + fm(r) + fs(r)] (3)

fe ) -ε(r)
8π

(∇ ψ)2 + e(n+ - n-)ψ (4)

fi ) kBT [n+(log(n+a3) - 1) + n-(log(n-a3) - 1)] (5)

fm )
kBT

a3
[φ log φ + (1 - φ) log(1 - φ) + �φ(1 - φ)]

(6)

fs ) kBT(R+n+ + R-n-)φ (7)

FA ) IA d2r eσψs (8)

∫V
d3r f (ψ, n(, φ) + IA d2r eσψs (9)

g(r) ) f (r) - kBT [µ+n+(r) + µ-n-(r) + µφ

φ(r)

a3 ]
(10)

∇ · ( ε
4π

∇ ψ) + e(n+ - n-) ) 0 (11)

( eψ
kBT

+ log(n(a3) + R(φ - µ( ) 0 (12)

log( φ

1 - φ) + εra
3

8πkBT
(∇ ψ)2 + �(1 - 2φ) +

a3(R+n+ + R-n-) - µφ ) 0 (13)

δg
δψs

) 0 ⇒ n̂ · ∇ ψ|
s
) -4πe

εs
σ (14)
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where n̂ is the unit vector normal to the bounding surfaces,
εs ) ε0 - εrφs and φs are the surface values of ε and φ,
respectively. The last equation, just as for standard PB theory,
expresses the electroneutrality of the system, as can be shown
by the integral form of Gauss law.

By solving the above set of equations, one can obtain the
spatial profiles of the various degrees of freedom at thermody-
namic equilibrium. For a general geometry, these equations can
be solved only numerically.

B. Bulk Behavior. In the bulk, the system is homogeneous
having a zero potential ψ ) 0 and bulk values of n+ ) n- ) nb

and φ ) φb. The EL equations, eqs 11-13, reduce to

Eliminating the n( fields, we remain with a single bulk
equilibrium equation

where Γ is defined as

Depending on the values of µφ, µ(, R(, and �, the solutions of
the bulk equation correspond either to a single phase of density
φb or to a coexistence between two phases with different
densities. Hereafter, we restrict ourselves to the single-phase
region of the phase diagram, where the chemical potentials µ(
and µφ follow directly from the form of the bulk free energy.

C. Planar Geometry. We exploit the symmetry of a planar
system in order to derive analytically the pressure acting on
the boundaries of the confined system. For a binary mixture
confined to a slab delimited by two planar charged surfaces of
infinite lateral extent (see Figure 1), the general treatment
introduced above can be simplified, and the free energy can be
cast into a one-dimensional integral over the normal ẑ direction.
For this special case, we show next that the pressure is
proportional to the first integral of the EL equations. Using this
expression, we also derive a first-order differential equation for
the electrostatic potential that will greatly simplify the problem.

1. Pressure in Planar Geometries. We start from a general
form of the free energy F which depends on N one-dimensional
fields {ψ1(z),..., ψN(z)} and their derivatives {ψ1′(z),..., ψN′ (z)}

When f does not depend explicitly on the coordinate z, ∂f/∂z )
0, we obtain the following relation (see Appendix A):

In our problem, f can be written as a sum of electrostatic and
nonelectrostatic contributions

where h is the grand potential of N different species with
densities {n1,..., nN} of a general form but without any
electrostatic interactions. The charge of the ith species is denoted
by qi, and ε({ni}) is the dielectric response as a function of the
densities {n1,..., nN}. Substituting eq 20 into eq 19, we obtain

Finally, using the equilibrium equations for the densities
{n1,..., nN}

we end up with the following expression

For the special case of noncharged liquid mixtures, f reduces
to h, while it follows from general thermodynamic identities32

that the last two terms in eq 23 are equal to the negative of
the local pressure

However, even in a charged liquid mixture, the electrostatic
potential vanishes away from the boundaries so that P is also
the bulk value of the pressure in a charged system. Together
with eq 21, it follows that the first integral can be cast into
the form:

Namely, the integration constant of eq 23 is simply the
negative of the pressure and is a constant throughout the
system. We next consider separately the properties of the
electrostatic and nonelectrostatic terms in eq 23.

The first term is nothing but the negative of the zz component
of the Maxwell electrostatic stress tensor, appropriately general-
ized to the case where the dielectric permeability is density
dependent.33 The last two terms together, as already noticed,
represent the local pressure of the system in the presence of
charges. In the standard PB theory, these two terms are given
by the van’t Hoff form, while here they are given by an
appropriate generalization, stemming from the free energy
ansatz, eq 3. Combining all the terms in eq 23, we get the total
zz component of the stress tensor, which in thermodynamic
equilibrium has to be a constant and equal to -P, eq 25.

log(nba
3) + R(φb - µ( ) 0

log( φb

1 - φb
) + �(1 - 2φb) + a3(R+ + R-)nb - µφ ) 0

(15)

log( φb

1 - φb
) + �(1 - 2φb) + Γ e-

1/2(R++R-)φb - µφ ) 0

(16)

Γ ) (R+ + R-) e
1/2(µ++µ-) (17)

F/A ) ∫ dz f ({ψi(z), ψi
′(z)}; z) (18)

f - ∑
i)1

N
∂f

∂ψi
′ψi

′ ) const (19)

f ) -
ε({ni})

8π
ψ′2 + ∑

i)1

N

qiniψ + h({ni}) (20)

- ε
8π

ψ′2 + ∑
i)1

N

qiniψ + h + ε
4π

ψ′2 ) const (21)

∂f
∂ni

) - 1
8π

∂ε
∂ni

ψ′2 + qiψ + ∂h
∂ni

) 0 (22)

1
8π[ε + ∑

i

∂ε
∂ni

ni]ψ′2 + h - ∑
i

ni
∂h
∂ni

) const (23)

P ) -h + ∑
i

ni
∂h
∂ni

(24)

-P ) 1
8π[ε + ∑

i

∂ε
∂ni

ni]ψ′2 + h - ∑
i

ni
∂h
∂ni

(25)
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Note that the above proof is valid for any form of the free
energy f (as h had an arbitrary form) and accounts for
electrostatic as well as nonelectrostatic degrees of freedom in a
completely general way. Applying this general result to our free
energy, eqs 3-7, yields the following form of the total pressure:

This pressure P should be compared with the pressure of the
standard PB theory:

and contains several additional terms. In fact, the difference
between the two is twofold: first, a polarizability term of the
form εrφψ′2/4π is included in the pressure, since the dielectric
constant is now spatially dependent. This term is equal to the
product of the polarization -εrφψ′ and the electric field E )
-ψ′. Second, the short-range interactions also change the form
of the pressure: the solvent interactions contribute the term
-�φ2/a3, and the ion-solvent interactions add the two terms,
R+n+φ and R-n-φ. This last addition changes the pressure
significantly when considering two similarly charged surfaces.
We will discuss this point at length below.

2. First Integral of the EL Equations in Planar Geometries.
We now use the form of the first integral of the EL equations
(eq 26) to obtain an explicit first-order differential equation for
the electric field. The EL equations for the ion densities, eq 12,
give the following relations:

From the first integral, we now deduce

The difference between the pressure P at finite separation and
its bulk value Pb (infinite separation) is given by the rescaled
osmotic pressure Π ) (P - Pb)/kBTnb and

For a single plate (or, equivalently in the limit of two plates at
infinite separation), Π vanishes. Note that n( in eq 29 are
functions of φ and ψ, and φ is by itself a function of ψ and ψ′,

given by eq 13 that is a transcendental algebraic equation for
φ:

The boundary conditions for each plate/boundary are given
by three coupled algebraic equations for φs, ψs, and ψs′. The
first two equations are eqs 29 and 31. The third equation is
given by the electroneutrality condition, eq 14, that can be
simply rewritten in the form

and εs was defined after eq 14.

III. Results and Discussion

The equilibrium equations eqs 29, 31, and 32 derived above
have no closed analytical solution. Hence, we solve them
numerically to obtain spatial profiles for φ and n(. In addition,
by considering the new terms as small perturbations (compared
to the regular PB theory), we show that an approximate
analytical solution can be derived for the single plate case in
the absence of salt. We then show numerical results for the
pressure as a function of separation and for the pressure
dependence on the experimentally controlled parameters R+,
φb, and nb. Lastly, we compare our results to one available set
of experiments on DNA in a binary solvent mixture.

A. Density and Permeability Profiles. We investigate the
limit of small concentrations of the low dielectric component
with no preferential solvation interactions (R( ) 0) and for two
values of the � parameter. In Figure 2, we compare these
numerical solutions for a single surface (for which the osmotic
pressure vanishes, Π ) 0, similar to infinite interplate separa-
tion) to the ones of the regular PB equation with a homogeneous
(average) dielectric constant, εav ≡ εA - φb(εA - εB).

When all additional interactions are omitted (R( ) 0 and
� ) 0), the difference between the two models is negligible.
While the deviation in φ right at the surface reaches 10% of its
bulk value φb, it leads to only a 0.5% deviation for the dielectric
constant ε at the surface. The dependence of the other fields ψ
and n( on φ is only due to changes in the dielectric constant.
Therefore, in the limit of no short-range interactions, these fields
hardly differ from the results of the regular PB model with
homogeneous dielectric constant εav. The correction due to
addition of solvent short-range interactions is also found to be
small, even for larger solvent-solvent interaction, � ) 1.5. This
� value still describes a single bulk phase, as it is smaller than
the critical value �c ) 2. We conclude that, in the absence of
preferential solvation, R( ) 0, the modified PB model has only
a small added effect on the permeability, as can be seen in Figure
2.

In Figure 3, we examine numerically the effect of preferential
solvation on the solvent profile in the low concentration limit
(φb ) 0.09). Simply stated, when the ions prefer to be in the
vicinity of the high permeability solvent molecules, we expect
an increase in the exclusion of the low permeability solvent
near the wall. Indeed, as can be seen in Figure 3, the exclusion
of the low permeability solvent increases with R+. We also find

P ) - 1
8π

(ε0 - 2εrφ)ψ′2 +

kBT (n+ + n- - log(1 - φ)

a3 ) +

kBT (R+n+φ + R-n-φ - �φ
2

a3 ) (26)

PPB ) - 1
8π

εψ′2 + kBT(n+ + n-) (27)

n((ψ, φ) ) nbe
-eψ/kBT-R((φ-φb) (28)

(dψ
dz )2

)
8πkBT

(ε0 - 2εrφ)(n+ + n- - 2nb +

R+(n+φ - φbnb) + R-(n-φ - φbnb) +

1

a3
log

1 - φb

1 - φ
- 1

a3
�(φ2 - φb

2) - nbΠ) (29)

Pb

kBTnb
) 2 + (R+ + R-)φb - 1

a3nb

log(1 - φb) -

1

a3nb

�φb
2 (30)

εr

8πkBT(dψ
dz )2

+ R+(n+ - nb) + R-(n- - nb) +

1

a3(log
φ

1 - φ
- log

φb

1 - φb
- 2�(φ - φb)) ) 0 (31)

εsψs
′ + 4πeσ ) 0 (32)
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that the value of the co-ion-solvent short-range interaction
parameter R- does not significantly affect the form of the
permeability profile and is set hereafter to zero.

Moreover, when increasing R+ even further (R+ ) 30 in
Figure 3), φ(z) and ε(z) have a sharp change at about z ) 2 Å.
Namely, a layer rich in A species is formed near the wall with
a thickness of a few angstroms, and at a certain distance from
the wall φ decreases abruptly to a value close to the bulk value
φb. This phenomenon is clearly a consequence of the n+φ

coupling and is in itself not an electrostatic effect. A gradient
squared term (∇ φ)2 in the free energy would have smoothed
out this behavior and will be considered elsewhere. The steep
variation observed for the nonhomogeneous mixture could be
due to the fact that the boundary condition demands a φ value
that is much different from the one that follows from the bulk
equation (eq 16), so that the system tends to exhibit bulklike
behavior as soon as possible. A detailed analysis of this
phenomena will be presented in a separate study.

B. Some Analytic Results. The model described above can
be solved analytically by making some simplifying assumptions,

and considering certain limiting behaviors. We assume that there
are no solvent short-range interactions (� ) 0) and that the
preferential solvation interaction is weak compared to kBT
(R+ , 1). We also assume that the contribution due to the
permeability inhomogeneities is negligible, and take ε through-
out the system to be the weighted average of the two bulk
relative compositions, εav. Moreover, we take the limit of zero
salt, as if only counterions are present to keep the system neutral.
Lastly, we assume that one of the solvent concentrations is much
smaller than the other.

With these assumptions, we can practically isolate the effect
of preferential solvation and obtain analytical profiles. The PB
equation in this limit assumes the form

where the ion density n(z) is a function of both the potential ψ
and the solvent relative composition φ

Figure 2. Spatial profiles of (a) the solvent relative composition φ and (b) the permeability ε. The regular PB with homogeneous dielectric constant
ε ) 77 (solid line) is compared with our modified PB for binary mixture with and without short-range interactions, � ) 0 (dashed line) and
� ) 1.5 (dotted line), respectively. Other parameters are σ ) -1/100 Å-2, nb ) 10-4 M, εA ) 80, εB ) 20, and φb ) 0.05. In all the cases, no
preferential solvation is considered, R( ) 0.

Figure 3. Spatial profiles of (a) the solvent composition φ and (b) the dielectric constant ε for various values of R+ as shown in the legend. The
co-ion parameter is R- ) 0, the surface charge density is σ ) -1/100 Å-2, and the salt concentration is nb ) 10-4 M. The solvent dielectric
constants are εA ) 80 and εB ) 20. The bulk value of φ is φb ) 0.09.

d2ψ
dz2

) -4πen(z)
εav

(33)
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The prefactor nb is determined by satisfying the electroneutrality
condition, and the subscript ( in n( is omitted in this counterion
only case.

The composition φ as a function of n is

Here, we made use of the assumption that the preferential
solvation interaction is small, R(a3n) , 1. Substituting it back
into eq 34, we obtain for the further limit, Rφ , 1,

For finite values of eψ/kBT and in the limit of R2φba3nb , 1,
we obtain to lowest order

Using this equation in the PB equation, we get a second order
differential equation for ψ:

For a single plate, the boundary condition to the equation above
is given by

where lB ) e2/εavkBT and λGC is the well-known Gouy-Chapman
(GC) length.10

Solving the equation above, we obtain the following results:

where λs
2 ) R2a3φb/4πlB is a typical length associated with the

Rparameter.ThesecondlengthscaleisthemodifiedGouy-Chapman
(GC) length λGC

m obtained by satisfying the boundary condition:

For λs , λGC, one obtains λGC
m = λGC[1 + (λs/λGC)2]. Thus, the

effect of preferential solvation enhances the ion density in
the proximity of the surface, and results in a faster decay of the
density profile.

C. Pressure versus Separation Curves. Due to symmetry,
the pressure between two identically charged plates is most
conveniently calculated at the midplane. When considering the
change in pressure due to the permeability inhomogeneity,
one can separate the direct and indirect corrections. The direct
one is due to the change of midplane composition φ(z), while
the indirect one is related to changes of the midplane ion density.
In the absence of preferential solvation (R( ) 0), φ at the
midplane depends only on the local value of the electrostatic
field (see eq 31 with R( ) 0). However, in a symmetric two-
plate system, the electrostatic field vanishes at the midplane and
φ there equals to its bulk value, ultimately contributing no
correction to the pressure. Moreover, since ε(z) turns out to be
nearly homogeneous (see Figure 2), the indirect correction is
minute as well. Thus, in the absence of preferential solvation
the combined effect of a binary mixture is negligible.

When adding the preferential solvation term characterized
by the parameter R( (the term coupling between n( and φ), φ

becomes dependent on the nonzero midplane potential. As a
consequence, the midplane φ value differs from φb and results
in two direct corrections to the pressure. The first comes from
the osmotic pressure of the solvent (∼kBT(φ - φb)/a3), while
the second originates from the φn( coupling term. Thus, even
if the indirect contribution to the profiles is negligible, the direct
correction alone can substantially change the pressure.

The effect of preferential solvation on the pressure between
two identically charged surfaces is now examined for various
values of the R+ parameter. As the coupling term in eq 26
contributes directly to the pressure, the effect of changing R+
is rather pronounced in the pressure versus separation curves
(see Figure 4). The figure clearly shows that the pressure
decreases when R+ increases. Yet, because the effect is short
ranged, the major differences are observed at small separations
(D < 2 nm). From the analysis of the profiles with respect to
the interaction strength (Figure 4), we conclude that the change
in pressure is substantial only up to distances of a few
nanometers. This means that for large separations the midplane
values of the fields ψ, n, and φ within our model will be similar
to the regular PB theory predictions. However, for small
separations of the order of 1-2 nm, both the profiles and the
pressure are affected by the preferential solvation.

D. The Effect of the Solution Parameters on the Pressure.
We proceed by examining the influence of the parameters R+,
φb, and nb on the pressure. The R+ parameter can be modified

n(z) ) nb e-eψ/kBT-R(φ-φb) (34)

φ ) φb e-Ra3n = φb(1 - a3Rn) (35)

n )
nb e-eψ/kBT

1 - R2a3
φbnb e-eψ/kBT

(36)

n = nb e-eψ/kBT(1 + R2
φba

3nb e-eψ/kBT) (38)

d2ψ
dz2

) -
4πenb

ε (e-eψ/kBT + R2
φba

3nb e-2eψ/kBT) (39)

e
kBT

dψ
dz |

z)0
) 4πlB|σ| ≡ 2

λGC
(40)

ψ(z) )
kBT

e
log[(z + λGC

m )2 - λs
2] + ψ0 (41)

n(z) )
(z + λGC

m )2 + λs
2

2πlB[(z + λGC
m )2 - λs

2]2
(42)

λGC
m )

λGC

2
(1 + √1 + 4(λs/λGC)2) (43)

Figure 4. Dependence of pressure on separation D for various
ion-solvent interaction strengths R+ as shown in the legend. Other
parameters are σ ) -1/100 Å-2, nb ) 10-4 M, εA ) 80, εB ) 4, and
φb ) 0.09.
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experimentally by using different solvents, while φb and nb can
be easily controlled in the experiment by changing composition.

In Figure 5, we present the dependence of the pressure
Π(R+; D) on the interaction strength R+ for a fixed separation.
As expected, for small values of R+ (<2), the pressure depends
only weakly on the interaction strength, whereas for larger
values the pressure falls with R+. This implies that there is a
value of R+ where its direct contribution to the pressure becomes
larger than all other contributions (electrostatic and entropic).
Moreover, the slope of Π(R+; D) depends on the separation, as
can be clearly seen by comparing the D ) 0.5 nm and D ) 1
nm results. For smaller separations (D ) 0.5 nm), the
preferential solvation effect is stronger in accordance with the
results shown in the previous sections (Figures 2-4), where
the effect has a range of a few nanometers. For D ) 2.5 nm,
the pressure changes very slowly with R+ and the preferential
solvation is small even for large R+ (15 < R+ < 20).

Next, we investigate how increasing φb changes the pressure.
In Figure 6, we plot the pressure versus φb for a fixed separation
D ) 1 nm for three values of the interaction strength R+.
Increasing the low permeability solvent concentration decreases
the pressure through decrease of the permeability and by
increasing the preferential solvation. The results in Figure 6
suggest that even for R+ ) 0 (no preferential solvation) the
pressure decreases with φb, implying that the dielectrophoretic
mechanism contributes a nearly linear dependence on εr. When

increasing R+, the Π(φb) slope is steeper due to higher bulk
pressure of the low permeability solvent, contributing directly
to the pressure through the preferential solvation term (eq 26).

Since there is a linear φb term in the pressure (∼ -kBTφb/a3),
one can deduce from the results above that the main contribution
to the pressure comes simply from a higher reference concentra-
tion φb that reduces the pressure. Namely, for small separations,
the solvent φ and the ion n( at the midplane have only a weak
dependence on φb, similar to regular PB theory where the
pressure has no dependence on the bulk salt density nb at small
separations.10

Finally, we investigate the influence of the salt concentration
on the pressure at fixed separation (D ) 1 nm). The results are
presented in Figure 7, where we plot the pressure versus the
salt concentration for fixed separation and for different
values of the interaction strength R+. For low concentration
(nb < 10-2 M), the pressure has no dependence on nb. It is
known from the regular PB theory10 that, at small separa-
tions, when the Debye length is much larger than the separation
(λD . D), the pressure only weakly depends on the salt
concentration. In this sense, the modified PB theory presented
here is similar to the regular PB theory. The effect of preferential
solvation is just a constant addition to the pressure, which keeps
the same dependence of the pressure on the salt concentration.
When going to larger concentrations, where the Debye length
becomes comparable to or smaller than the separation, the
pressure decays exponentially as can be expected also from
standard PB theory.

E. Comparison of Model with Experiment. So far, we have
shown that we are able to account for some of the forces that
lead to cosolvent preferential exclusion from charged interacting
macromolecular surfaces. In particular, our model accounts not
only for locally varying dielectric profiles that follow the solvent
mixture composition (through the variables εA and εB), but also
for preferential ion solvation (through the variables R(), that in
turn depends on local solvent composition as well. Using these
two sets of parameters, it is possible to propose a physical
mechanism for solute (or solvent) exclusion from interacting
surfaces. The different dielectric constants of the two solvent
components cause depletion of one of the components from the
charged surface. This variation in solvent composition can in
turn affect the concentration of ions between the two interacting
surfaces. The combined effect can lower the disjoining pressure
between equally charged surfaces by varying local solution
concentrations.

Figure 5. Pressure as a function of R+ for various interplate separa-
tions: D ) 0.5, 1, and 2.5 nm. Other parameters are σ ) -1/100 Å-2,
nb ) 10-5 M, εA ) 80, εB ) 4, and φb ) 0.09.

Figure 6. Pressure versus bulk solvent composition φb for various
ion-solvent interaction strength, R+. Other parameters are
σ ) -1/100 Å-2, nb ) 10-5 M, εA ) 80, and εB ) 4. The separation
is fixed at D ) 1 nm.

Figure 7. Pressure versus bulk salt concentration nb for various
ion-solvent interaction strength, R(. Other parameters are
σ ) -1/100 Å-2, εA ) 80, εB ) 4, and φb ) 0.09. The separation
is fixed at D ) 1 nm. Lines are guides for the eye.
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While it is hard to unambiguously prove the origins of the
molecular interactions that lead to the different solvation
properties of ions and cosolvent in the vicinity of complex
macromolecules, we show that by varying the model parameters
we can account for the observed trends in the experimental
studies of Rau and Stanely.6 In these experiments, osmotic
pressure is applied to a condensed phase of DNA strands in
aqueous solution by adding a neutral polymer, poly(ethylene
glycol) (PEG) that is completely excluded from the DNA phase.
The DNA-DNA spacings in solution, D, are measured using
small-angle X-ray scattering. In addition, salt and different
alcohols are added at different concentrations. Figure 8a shows
the experimentally derived Π(D) (equation of state) for DNA
solutions containing either 0.02 or 1.2 M NaBr salts, as they
appear in ref 6. Solutions to which 2-methyl-2,4-pentanediol
(MPD) alcohol was added at concentrations of 0.5 or 1 M are
compared with solution with no MPD. As the figure shows, for
both salt concentrations, the added salt lowers the DNA-DNA
spacing for a particular applied osmotic pressure. However, the
figure also clearly shows that the reduction in Π is more
significant at the higher salt concentration. This would imply
that salts (or more generally electrostatic forces) are involved
in determining the effect of MPD on Π, suggesting an important
role reserved for the dielectric properties that can be linked to
the distribution of ions and cosolvent partitioning in between
the DNA strands.

Even though our model considers interactions between flat
surfaces, rather than the cylindrical ones expected for DNA
strands, we show that it is possible to get similar trends to those
found in experiment using the two sets of the ε and R
parameters. Figure 8b shows our results for two charged plates
with charge density similar to that of DNA (σ ) -1/100 Å-2)
and dielectric constants of εA ) 80 (representing water) and εB

) 25 (close to the value of pure MPD). In our model, we use
only the relative volume fraction φb of the two species, water
and MPD, without accounting for their different molar weight
(water molar weight is 18 and that of MPD is 118). In the
experiment,6 the two MPD solutions have concentrations of 0.5
and 1.0 M corresponding, respectively, to φb ) 0.055 and 0.11.
These values are in good agreement with the values chosen in
our model (Figure 8b) to give a good fit to the experimental

data: φb ) 0.126 and 0.252. Note that the value φb ) 0.0018 is
chosen for convenience to fit the zero MPD concentration case.
The value of R+ could, in principle, be evaluated from the
solvation free energy of NaBr salts in binary water-MPD
solutions of different contents. Because such data is lacking,
we treat R+ as a fitting parameter and use R+ ) 5 (in units of
kBT), allowing us to fit closely the experimental data. We note
that this R+ value is close to the experimental transfer free
energy of sodium from water to ethanol ∼5kBT as was quoted
in ref 31. The value of R- for bromide, which was taken in our
work as zero, seems to be generally lower than that of R+ but
is less clearly resolved.30

We find that for this set of parameters the numerical
calculation grosso modo follows the experimental trends: the
spacing between curves grows with equal additions of alcohol
to the solution, but for the higher salt concentration the change
in Π is larger. These results underscore two important general
conclusions. First, it would be impossible to explain the
difference in the Π(D) behavior for high salt versus low salt
without discussing ions and the role of the dielectric medium.
Our model introduces these species in a self-consistent manner
through the PB-like theory. Second, the comparison demon-
strates the important role reserved for the preferential ion-
solvation interactions in the different components of the binary
solution. Specifically, it would be impossible to explain the shifts
in distances at a given applied osmotic stress without invoking
a nonzero R+, that in turn shifts the exclusion of ions due to
changes in solution composition in the DNA phase.

IV. Conclusions

The model presented in this work is a modification of the
regular PB theory and accounts for the effects of a dielectric
medium composed of two solvents. There are two important
features that modify the standard PB theory. Due to different
dielectric constants of the two solvents, the permeability is no
longer homogeneous. This effect is accounted for by coupling
the electrostatic field to the solvent local composition. The
second modification is the addition of a preferential solvation
term which enables the ions to drag a favorable solvent and
locally deplete the other. This is modeled by a coupling term

Figure 8. Pressure Π as a function of the separation D. (a) Experimental data. Circles (squares) represent the 0.02 M (1.2M) added NaBr salt
results adopted from ref 6. Empty circles and squares represent the experiment with no MPD. Gray circles and squares represent the experiment
with 0.5 M MPD. Black circles and squares represent the experiment with 1 M MPD. The dashed lines are guides to the eye. (b) Numerically
calculated lines from the model with parameters taken to match the experiment. Ion-solvent interaction strength is the same for all lines R+ ) 5,
and it was treated as a fitting parameter. The surface charge is taken as σ ) -1/100 Å-2 to fit the DNA values. The dielectric constants are
εA ) 80 (water) and εB ) 25 (MPD). Black lines are for nb ) 0.02 M, and gray lines are for nb ) 1.2 M. Solid, dashed, and dotted lines stand for
φb ) 0.0018, φb ) 0.126, and φb ) 0.252, respectively.
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between the ion density and the solvent local composition.
Similar models can be used for a number of problems such as
the properties of interfaces,15,16 the critical behavior of binary
mixture in the presence of ions,13,14 and the forces between more
elaborated charged macromolecules, which is the main focus
of this work.

For two identically charged planes, we find that, in the
absence of preferential solvation, the density profiles and the
pressure undergo only small modifications. This is demon-
strated numerically and supported by an argument that relies
on the symmetry of the two-plate system. However, by adding
the preferential solvation term, we are able to observe a
considerable correction to the pressure at small separations.
The coupling between ion density and solvent local composi-
tion appreciably changes the midplane concentration values,
and as a consequence the pressure is reduced. We also
investigated the dependence of the pressure on experimentally
controlled parameters such as salt concentration, bulk solvent
composition, and preferential solvation strength. The pressure
depends on the preferential solvation but changes substan-
tially only at small separations (1-2 nm). The threshold of
preferential solvation energy which is required to change the
pressure significantly is on the order of a few kBT. It is found
that the pressure depends nearly linearly on the bulk relative
composition, implying that the density profiles at small
separations have no dependence on φb. Finally, the effect of
added salt to the solution seems to change the pressure in
the same manner as for regular PB theory.

We also used our model to put fourth an explanation for
the experimentally measured pressures in a condensed phase
of DNA. The comparison shows that the experimental trend
is bourne out by our model results. This suggests that the
main mechanism causing the depletion of one solvent away
from the charged macromolecule is very plausibly the
preferential solvation of the ions. Thus, beyond simple
electrostatic screening, salt ions may play an additional and
important role in the behavior of charged macromolecules
immersed in solution.

Further applications and refinements of the model could
be considered. For example, the model can be used to analyze
the effect of strong preferential solvation on the critical
behavior. As shown in Figure 3, the solvent relative composi-
tion profile becomes discontinuous at strong preferential
solvation. We believe that this can be explained in the
framework of a Ginzburg-Landau theory that would account
for the phase transition. Moreover, in addition to the simple
planar geometry treated here, other geometries such as a
cylindrical one can obtain a more direct quantitative com-
parison with DNA experiments. Finally, the limit of ionic
dilute solutions can be generalized to the concentrated limit,
including the full entropy of mixing, as was considered in
ref 34.
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Appendix A: Derivation of Pressure in One-Dimensional
System

In the following we present the derivation of eq. 19. We start
from a free energy F, eq 18 which depends on N coupled one-
dimensional fields {ψ1(z),...,ψN(z)} and their derivatives
{ψ1′(z),...,ψN′ (z)}:

where i ) 1,..., N. There are N EL equations

The total derivative of f(z) is

Moreover, we can write

Substituting this back into eq A3 and using the EL equations
we find

When f(z) does not depend explicitly on the coordinate z,
∂f/∂z ) 0, the last term vanishes and we end up with a first
order differential relation:
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