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Recently, Rozovsky et al. reported on the morphology and dynamics of superstructures in three-component lipid
bilayers containing saturated lipid, unsaturated lipid, and cholesterol (Rozovsky, S.; Kaizuka, Y.; Groves, J. T.J. Am.
Chem. Soc.2005,127, 36). We suggest that the observed sequence of the striped-to-hexagonal morphological transition
in mixed bilayers can be attributed to an enhanced membrane surface tension that is induced by the vesicle adhesion
onto the solid surface.

I. Introduction

Raft domains in biological cell membranes are associated with
membrane signaling pathways and have attracted a great deal of
interest in recent years.1,2Because of the complexity of biological
membranes, a minimal model to investigate rafts (or more
precisely, domain formation) consists of three-component lipid
bilayers containing saturated and unsaturated lipids as well as
cholesterol. These three-component systems have been inves-
tigated both at the air-water interface and in artificial vesicles.3-5

Complex phase separation and the appearance of domains have
been observed using fluorescence techniques. Such a phase
separation occurs between a liquid-disordered phase rich in
unsaturated lipid (e.g., DOPC) and a liquid-ordered phase rich
in saturated lipid (e.g., sphingomyelin) and cholesterol.3-5

Recently, Rozovsky et al.6 reported on the morphology and
dynamics ofsuperstructuresin a ternary mixture of sphingo-
myelin, DOPC, and cholesterol. A giant 10µm unilamellar vesicle
is placed in contact with a lipid bilayer that is supported on top
of a silica surface. The experimental setup is shown schematically
in Figure 1. Fluorescence microscopy is used to monitor the
creation and temporal evolution of domains on the adhering
vesicle. The bound vesicle exhibits a gradual pattern transforma-
tion under the adhesion constraints. In a number of cases, the
nonadhering top region of the vesicle, which can be directly
imaged by the microscope, first exhibits a striped pattern of
well-characterized stripe width. As time evolves, the striped
pattern transforms quite abruptly into another pattern consisting
of an ordered hexagonal lattice of circular domains, as is
schematically represented in Figure 1. The transformation of the
stripes into circular domains is seen first as a “pinch-off” instability
of the stripe tip. In a matter of a few seconds, the entire striped
pattern is replaced by circular domains having roughly the same
diameter as the original stripe width. As time progresses even
further, the hexagonal pattern of circular domains becomes less

ordered. Because of the large size of the vesicle, its upper part
shown in Figure 1 of ref 6 is a few micrometers above the
supported lipid bilayer and is not in contact with the silica surface.
The shape of the vesicle and its contact area change as the pattern
evolves. Note that the field of view is adjusted to capture the
shape evolution.

It is known that surface tension can induce the adhesion of
a vesicle onto a substrate or to another vesicle,7 the reason being
that the membrane surface tension suppresses thermal fluctuations
and promotes its adhesive properties. A self-consistent treatment
of such a problem predicted the conditions for tension-induced
adhesion.7 On the other hand, it was reported that the spreading
of red blood cells on a substrate produces finite surface tension
that can even cause them to rupture.8 More recent experiments
on the pulling of nanotubes from adhered vesicles revealed that
membrane tension strongly increases during the pulling and
elongation of nanotubes.9
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Figure 1. Schematic representation of a mixed vesicle adhering
onto a supported lipid bilayer. The nonadhering upper region of the
vesicle exhibits a morphological transition from a striped phase to
a hexagonal phase with the elapse of time. The size of the vesicle
is on the order of 10µm, and the period of the modulation is roughly
1 µm. Details of the experiment are described in ref 6.
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In view of these works, we explore the relation between an
increase in surface tension and lateral morphological transitions
that can occur on the membrane plane. The aim of this paper is
to point out that the observed sequence of the striped-to-hexagonal
morphological transition in mixed bilayers may be attributed to
an enhanced membrane surface tension that is induced by the
vesicle adhesion onto the solid surface. In the next section, we
adopt such a model describing the modulation instability in mixed
membranes.10 We then analyze the consequence of this model
as surface tension is increased. Some discussion and extensions
of our model are provided in section III.

II. Model and Results
The main component of the model is to introduce a coupling

between the local composition on the membrane plane and the
local curvature. Rather than considering a closed-form vesicle
of finite area and enclosed volume, we deal here with a simpler
planar and extended membrane. Its shape is then described by
the displacementh(x, y) relative to the referencex-y plane. The
local relative composition (assuming a simple binary mixture of
two components) is denoted byφ(x, y). The total free energy is
written in terms of these two local fields. For simplicity, we
consider only small undulations above thex-yplane in the form
of a phenomenological expansion proposed in ref 10

whereσ > 0 andκ > 0 are the surface tension and bending
rigidity of the membrane, respectively. The parameterb > 0 is
related to the line tension between different domains, anda2 ∝
T- Tc is the reduced temperature (Tc is the critical temperature).
Below the phase transition,a2 is negative, and we need to include
in the expansion a positive fourth-order term,a4 > 0, for stability
purposes. The coefficient of the linear term,µ, is the chemical
potential. Finally,Λ is the composition-curvature coupling
constant. This coupling term represents the situation where the
spontaneous curvature of the membrane depends on the local
composition. For simplicity, other coupling terms such as (∇4h)φ
(that has a higher gradient order) as well as higher-order coupling
terms are omitted.

Starting from the above free energy, we first integrate out the
h-field in Fourier space. Then the effective free energy is expanded
in powers of the gradient ofφ10,11

where

In deriving the above expression, we performed an expansion
up to fourth order in the wavevectorq (or equivalently up to
fourth order in the differential operator in real space). When
B < 0 (orΛ2 > bσ), the coefficient of (∇φ)2 becomes negative,
leading to an instability of the homogeneous system with respect

to long-wavelength fluctuations. In this case, the magnitude of
the most unstable wavevector is given byq* ) (-B/2C)1/2. Notice
that the sign ofΛ can also be negative becauseB andC depend
only on Λ2.

The phase diagram can be constructed by comparing the mean-
field free energies of the striped and the hexagonal phases. The
stripe order parameter is

whereφ0 ) 〈φ〉 is the spatially averaged composition (imposed
by the chemical potentialµ) andφq* is the amplitude of theq*-
mode in thex direction. Similarly, the local composition of the
hexagonal phaseφH(rb) is given by a superposition of three modes:

Hereqb1, qb2, andqb3 are arranged symmetrically on a 2D circle
such that|qbi| ) q* and ∑i)1

3 qbi ) 0. Only the most unstable
wavevectorq* (single-mode approximation) is used in the
calculation. This can be justified for the weak segregation region
close to the critical point,T j Tc. In Figure 2, we reproduce the
original phase diagram of ref 10. It is presented in terms of the
reduced temperature and the reduced average composition
defined, respectively, by

whereas the surface tensionσ and other parameters included in
B andC are fixed. (We have corrected the numerical prefactors
of “2” in eq 10 of ref 10 in the above equations.)

Four distinct phasessdisordered (D), striped (S), hexagonal
(H), and inverted hexagonal (IH)scan be seen in Figure 2.
Regions of coexistence are omitted here for clarity. Thus, the
transition lines indicate the locus of points at which the free
energies of different phases cross each other. The calculated
phase diagram is in qualitative agreement with experiments
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Figure 2. Mean-field phase diagram in the (m,ε) plane.mrepresents
the reduced composition, andε represents the reduced temperature
as defined in eq 6. There are four different phases: the disordered
phase (denoted D1 and D2 on the two sides of the transition lines),
the striped phase (S), the hexagonal phase (H), and the inverted
hexagonal phase (IH). These phases are separated by first-order
transition lines. For simplicity, we show here by solid lines only the
crossover in the free energies while avoiding plotting two-phase
regions. The filled circle located at (m, ε) ) (0, 1) indicates the
critical point. Reproduced from ref 10.
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performed on mixtures of lipids in Langmuir monolayers at the
air-water interface.12

To see the role of surface tension clearly, we cannot directly
use the above phase diagram of Figure 2 becauseσ enters into
the two reduced variables,ε and m, via prefactorsB and C.
Instead, we construct a new phase diagram in terms of two
different reduced variables defined by

These two variables are related toε andm by

We note thatΩ is independent of the surface tension parameter
σ and that the only variation ofσ enters into the second variable,
Σ ∼ σ. With the use of these new variables, the phase diagram
can be drawn for a given value ofM ≡ (4κa4)1/2φ0/Λ. Different
values of M correspond to different values of the average
compositionφ0when the coupling constantΛ,a4, and the bending
modulusκ are kept fixed. Physically, this is quite reasonable
because we expect the latter parameters to have only a weak
dependence on temperature and composition.

Figure 3 is the calculated phase diagram in the (Ω, Σ) plane
for two choices of the parameterM: M ) 0.1 and 0.2. The reason
behind choosing theseM values will be discussed later. Because
Ω is a function ofφ0

2, this phase diagram does not distinguish
between the hexagonal (H) and inverted hexagonal (IH) phases
or between the disordered condensed (D1) and dilute (D2) phases
in Figure 2. (The inverted hexagonal phase and the disordered
condensed phase appear whenφ0 < 0.) Generally, the striped
phase (S) exists whenΣ ∼ σ is small. The dashed arrow in Figure
3 indicates a horizontal path along whichΣ (or, equivalently, the
surface tensionσ) increases for a fixed value ofΩ. Clearly,
along this path the striped phase (S) transforms into the hexagonal
phase (H) via a first-order phase transition. AsΣ increases even
further, there will be another first-order phase transition into the
homogeneous disordered phase (D).

It should be noted that although the calculated phase diagram
depends on the value ofM the sequence of the modulated
structures remains unchanged. Such a sequence of pattern
transformation, Sf H, upon increasing the surface tension is
consistent with the sequence observed in the mixed lipid bilayers.6

Hence, we consider that the enhanced surface tension during the
adhesion process is responsible for the morphological evolution
of the domain shapes in the adhering vesicle. This is the main
claim of the present paper. In the experiment of ref 6, they
observed that the area of the vesicle increased in time. This may
be due to the enhanced surface tension which acts to pull and
expand the vesicle. Moreover, the experiment shows that the
ordered hexagonal lattice further evolved to disordered circular
domains with elapsed time. Such a situation may correspond to
a transient state when the membrane undergoes a transition from
the hexagonal phase (H) to the disordered phase (D) as the surface
tension increases.

To make a comparison with ref 6, we give here the estimated
values for the model parameters in eq 1. The surface tension of
an adhering vesicle can be in the range of 5× 10-6 to 10-4J/m2,
and we have chosen hereσ = 10-5 J/m2.13 The other parameters
can be found in refs 7 and 14 asκ = 25kBT = 10-19 J andb =

5κ = 5 × 10-19 J. Although there is no direct measure of the
coupling constant value,Λ can be estimated by fitting the
experimentally observed modulation period (roughly 1× 10-6

m for the striped phase) with 2π/q*. Then we obtain the coupling
constant asΛ = 4.9× 10-12 J/m. This estimation is consistent
with that mentioned in ref 14. Using these values, the surface
tension required to induce the striped-to-hexagonal transition
can be evaluated asσ = Σ × (4.7 × 10-5) J/m2. For instance,
σ ) 1.4× 10-5 J/m2 whenΣ ) 0.3. Along the dashed right-hand
arrows in Figure 3, the most unstable mode changes asq* ∼
[Σ(1 - Σ)]1/2.

Furthermore, if we assumea4 to be of the same order asσ and
seta4 = 10-5 J/m2, then the parameter valuesM ) 0.1 and 0.2
are equivalent to settingφ0 ) 0.24 and 0.48, respectively. These
values are physically relevant and represent asymmetric binary
mixtures. Naturally, the modulation instability does not occur if
the model parameters do not satisfy the necessary conditionB
) b - Λ2/σ < 0, but with our above choice of parameters, we
are in the instability regimeB < 0.

III. Discussion

We have studied the effect of surface tension on a curvature
instability that is coupled to a lateral phase separation. Although
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Figure 3. Mean-field phase diagram in the (Σ, Ω) plane for (a)M
) 0.1 and (b)M ) 0.2. Σ represents the reduced surface tension,
andΩ represents the temperature-composition coupling parameter,
as defined in eq 7. The definitions of the different phases are the
same as in Figure 2. The effect of increasing the surface tension is
represented by the dashed right-hand arrow.
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eq 1 provides a minimum and sufficient model to see such an
effect, several points merit further discussion.

(i) We have considered only an average flat and extensive
membrane rather than closed-shaped vesicles of finite area and
volume. In the case of closed-shaped vesicles, the principle
mechanism of the tension-induced transition should prevail, but
a pressure difference across the vesicle should be taken into
account because it plays an important role in the selection of the
most stable modes on the vesicle.15-17

(ii) The present model is valid for membranes composed of
a binary mixture, although a ternary mixture is used in ref 6.
Nevertheless, the local compositionφ can be taken as the
composition of one of the lipids, say sphingomyelin or DOPC,
with respect to its critical value. This is because the liquid-
ordered phase may be only moderately enriched in cholesterol.
An extension of the present model to a ternary mixture is also
possible following ideas similar to those in ref 18.

(iii) As stated before, we considered the weak segregation
limit of the lateral phase separation, which is valid when the two
phases are only weakly immiscible. Such an approximation was
taken in refs 10 and 17, whereas the opposite strong-segregation
limit was investigated in refs 15, 16, 19, and 20. At present, it
is not clear which approximation is more appropriate to account
for the experimentally observed patterns because the experimental
system probably lies in an intermediate regime. In a recent paper
dealing with the strong segregation limit,20 however, the striped
phase exists between the hexagonal and the disordered phases,
and the increased surface tension causes areVerse transition
from the hexagonal to the striped phase. Although the experi-
mentally observed sequence of the transition is in qualitative
agreement with the trend found in our weak segregation theory,
more work needs to be done before further conclusions can be
drawn. In particular, there is a need to do experiments where the
surface tension is either controlled or measured directly. That
will allow a more quantitative agreement between theory and
experiment.

(iv) In other generalizations of the model, the bilayer nature
of the membrane can be taken into account explicitly. In the case
of mixed vesicles, the spontaneous curvature arises from the
asymmetry in the composition between the inner and outer leaflets
comprising the bilayer membrane.21,22 Asymmetry in the
composition occurs in situations where the two leaflets experience
a different environment as well as in biological cells because of
active (in vivo) processes.23 Although the evidence of the
asymmetric composition between the inner and outer leaflets
has not been reported in ref 6, it might exist for an adhering
mixed vesicle because only the outer leaflet is in contact with

the surface. More detailed theories dealing with the bilayer nature
of the membranes are given in refs 18 and 24 and can be
generalized to the present case of mixed vesicles.

We next discuss how the present work is related to previous
models beside refs 19-20. Hu and Granek14 investigated the
buckling of mixed amphiphilic monolayers by considering similar
coupling between the composition and the curvature. In their
work, the surface tension is introduced as a Lagrange multiplier
in order to ensure the fixed total area of the monolayer (fixed
area ensemble). In our case, however, the surface tension is
regarded as a control parameter of the membrane shape (fixed
surface tension ensemble). Despite the difference in the working
ensembles, they also predicted that a transition from the striped
to the hexagonal phases can be induced either by decreasing the
coupling constant (Λ in our paper) and/or increasing the line
tensionb (Figure 3 in ref 14). Notice that both parameter changes
are equivalent to increasingΣ, as seen in eq 7, and our result is
consistent with theirs.

In previous experiments of ref 4, similar striped and hexagonal
patterns have been shown, but no similar temporal evolution was
reported. This may be because the vesicles in ref 4 were suspended
in an aqueous solution (rather than adhering onto a surface) and
their surface tension is not increasing as function of time. It is
also not entirely clear how much the patterns and domains seen
on the vesicular surface are truly equilibrium ones or just long-
lived metastable ones.

Finally, we comment on the dynamical aspect of the observed
morphological transition. In the past decade, kinetics of phase
transitions between different ordered mesophases have been
studied intensively, especially for block copolymer systems.25

Among various works, Nonomura and Ohta investigated the
morphological transition between the lamellar and the hexagonal
phases in two dimensions.26 Their dynamical equation is based
on the time-dependent Ginzburg-Landau equation using a free
energy that includes a long-range repulsive interaction term.
This free energy is known to be similar to the one used in the
present work.

In ref 26, the transition is induced by changing the temperature.
Note that in our Figure 3 a change in temperature is simply a
vertical scan whereΩ ∼ a2 ∝ T - Tc changes, whereasΣ ∼ σ,
M, andφ0 are kept fixed. The vertical scan can also lead to a
crossover between the striped and hexagonal phases. In the
experiments,6 however, the temperature is kept fixed, and we
consider that the origin of the transition relies on the temporal
increase in the surface tension as detailed above. Despite the
difference in the control parameters (either temperature or surface
tension), the time evolution of the structure in the simulation26

is very similar to that observed for the lipid mixtures. For example,
the stripes undergo a pearling phenomenon, and the hexagonal
domains appear at the grain boundaries of the lamellar structure.
We hope that more quantitative measurements of the surface
tension during the adhesion process will shed light on this
intriguing phenomena and will lead to further theoretical
investigations.
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