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ABSTRACT: We study the phase behavior of diblock copolymers in the presence of an external electric
field. We employ self-consistent-field theory and treat the relevant Maxwell equation as an additional
self-consistent equation. Because we do not treat the electric field perturbatively, we can examine its
effects even when its magnitude is large. The electric field couples to the system’s morphology only through
the difference between the dielectric constants of the two blocks. We find that an external field aligns a
body-centered-cubic phase along the (111) direction, reducing its symmetry group to R3hm. Transitions
between this phase and the disordered or hexagonal phases can occur for external electric fields ranging
from a minimum to a maximum value beyond which the R3hm phase disappears completely. This electric
field range depends on diblock architecture and temperature. We present several cuts through the phase
diagram in the space of temperature, architecture, and applied field, including one applicable to a system
recently studied.

I. Introduction

Because block copolymers readily self-assemble into
various ordered arrays, they have been avidly studied
for technological applications such as high-density
porous materials, nanolithographic templates, photonic
band gap materials,1-3 and well-ordered arrays of metal
nanowires.1,4 One practical difficulty to their use in some
applications is that the ordered phase is not created in
one single crystal, but rather in domains of differing
orientation. One means of aligning the domains is to
apply an external electric field. It has been shown3,5-8

that applying an electric potential, on the order of a few
to a few dozen volts across electrodes separated by
several micrometers, can effectively orient domains of
lamellar or cylindrical morphology normal to the sur-
faces of thin films. The basis of this orientation effect
is simple. To reduce accumulation of polarization charge,
the system lowers its free energy by aligning cylinders
or lamellae so that their long axis is parallel to the
applied field.

Recently, related experiments on diblock copolymers9

have been performed where external fields have been
applied to bring about a phase transition from a phase
of spheres to one of cylinders. In the phase of spheres,
it is not possible to eliminate the accumulation of
polarization charge so that its free energy increases in
an external field with respect to a cylindrical phase, and
a phase transition can be induced. This change in phase
due to the application of an electric field was considered
by Tsori et al.10 and by Xu et al.9

The effects of an external field on an ordered array
of inhomogeneous dielectric material are of great inter-
est. First, the problem is inherently self-consistent
simply because the material is a dielectric; i.e. the
electric field at a given point depends on the polarization

at that point which, in turn, depends on the local electric
field. In addition, in the problem of interest here, the
local dielectric constant is inhomogeneous. It depends
on the morphology of the ordered phase, which itself
depends upon the local electric field.11

In previous calculations for diblock copolymers,9,10 this
self-consistent circle has been broken by assuming that
the two blocks are only weakly segregated, resulting in
a small amplitude of the spatial variation of the relative
concentration of the two blocks. In this case it follows
from the vanishing of the divergence of the electric
displacement that the amplitude of the spatially varying
electric field is also small so that the electrostatic
Maxwell equation can be solved perturbatively for the
electric field as a function of the order parameter. This
procedure was carried out to quadratic order in the field
by Amundson et al.12 It is appropriate in the weak-
segregation limit and should be adequate for determin-
ing the general phase behavior in weak external fields.
However, since experiments are often not in the weak
segregation limit and the effect of electric fields has
hardly been explored, further study is clearly called for.

In recent years, thermodynamic properties of block
copolymer systems have been treated successfully by the
full self-consistent-field (SCF) theory, to which weak-
and strong-segregation theories are approximations.13

Given the self-consistent nature of an inhomogeneous
dielectric in an external electric field, it seems natural
to apply the full SCF theory to this problem as well.
That is what we do in this paper. We solve exactly the
full set of SCF equations and the appropriate Maxwell
equations under the assumption of a simple constitutive
relation between the local dielectric properties and the
local volume fractions. In particular, we consider the
evolution of the bulk phase diagram of diblock copoly-
mers in an applied electric field and focus upon its effect
on reducing the region of the phase diagram occupied
by the body-centered-cubic (bcc) structure (space group* Corresponding author. E-mail: chimney@u.washington.edu.
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Im3hm). Evolution of the gyroid structure (space group
Ia3hd), whose region in the phase diagram also decreases
due to the application of a field, is not considered.

We calculate the strength of an external field needed
to bring about a phase transition from the (distorted)
spherical phase to the disordered phase and to the
cylindrical phase. For the transition to the latter phase
we find two distinct behaviors depending upon the
architecture of the diblock, as measured by the param-
eter fA introduced below. The first is brought about if a
transition from the spherical phase to the cylindrical
phase can be induced in the absence of an external
electric field simply by reducing the temperature in the
realm of interest. If so, the same must also be true for
very small fields. As a consequence, one can always find
a temperature in that realm at which an arbitrarily
small field will induce a transition from the spherical
to the cylindrical phase. The other behavior occurs if
the spherical phase is the most stable one in the absence
of an external field for temperatures in the realm of
interest. In that case, a nonzero external field is
required to induce a transition from it to the cylindrical
one at any temperature in this realm. In either case,
we find that for a given architecture there is a maximum
value of applied field beyond which the spherical phase
is no longer the most stable one for any temperature.

In the following section, we set up the general
formalism. In section III, we discuss its application to
the phase of (distorted) spheres and compare the results
of the full self-consistent calculation with those obtained
from an expansion of the free energy in the electric field
to order E2. Such an expansion does not indicate the
optimal direction in which the field aligns the cubic
phase, whereas the full calculation shows that align-
ment along the (111) direction is favored over a (100)
orientation. There is a concomitant reduction of the
symmetry of the phase from Im3hm (bcc phase) to R3hm
(distorted spherical phase). Various cuts through the
phase diagram are also presented. We conclude with a
brief summary and comparison with recent experi-
ments.

II. General Formalism

We consider a melt of n A-B diblock copolymer
chains, each of polymerization index N ) NA + NB. If
the specific volumes of the A and B monomers are vA
and vB, respectively, the volume per chain is vp ) NAvA
+ NBvB. For an incompressible melt of A-B chains, the
volume fraction of the A monomers is NAvA/(NAvA +
NBvB), and the total system volume is Ω ) nvp. We
assume the monomer volumes to be identical, vA ) vB,
so that the volume fraction of the A monomers is equal
to the mole fraction of the A monomers, fA ) NA/N. We
also assume that the Kuhn lengths of the A and B
components are identical, a length denoted a.

In the absence of an external field, the application of
SCF theory14 leads to a free energy F which is a
functional of unknown fields WA, WB, and ¥ and a
function of temperature T

where kB is the Boltzmann constant; ΦA(r) and ΦB(r)
are the local volume fractions of A and B monomers.
The dependence on T comes from the usual Flory
interaction parameter, ø, which to a good approximation
is inversely proportional to the temperature, øN ) b/T
with b a constant. The function Q[WA,WB] is the parti-
tion function of a single polymer chain subject to the
fields WA(r) and WB(r), as is given below. The field ¥(r)
is a Lagrange multiplier that enforces locally the
incompressibility constraint, ΦA(r) + ΦB(r) ) 1. The
three unknown fields are determined by requiring that
the free energy functional be extremized with respect
to their variation at constant T.

The fields WA and WB appear in the single-chain
partition function of the flexible diblock copolymer,
Q[WA,WB] ) ∫dr q(r,1)/c, where q(r,s) satisfies the
modified diffusion equation

and

with the initial condition q(r,0) ) 1, and c is a volume
of no consequence here.

The addition of a local electric field E(r) in the
derivation of the free energy F is straightforward. In
an ensemble for which an external electric potential is
held fixed,15 the above free energy simply becomes

where ε0 is the vacuum permittivity and κ(r) is the local
dielectric constant. A constitutive relation between κ(r)
and the volume fractions of A and B monomers must
be specified. We choose the local dielectric constant to
be given by its local average

where κA and κB are the dielectric constants of pure A
and B homopolymer phases, respectively. This choice
is clearly correct in the limiting cases of the pure
systems and in the weak-segregation limit. It also has
the virtue of simplicity and should capture the essential
physics.

From the above it can be seen that a convenient scale
for the strength of the electric field is

The magnitude of this electric field unit at typical
experimental temperatures, T = 430 K, and for typical
volume per polymer chain, vp = 100 nm3, is E = 82
V/µm. We shall denote the dimensionless electric field
rescaled in this unit as Ê ≡ E/E. Similarly a dimension-
less displacement field, D̂, is conveniently defined by
D̂ ≡ D/ε0E.

F (WA,WB,¥;T)
nkBT

≡ -ln Q [WA,WB] +

1
Ω∫dr {øNΦAΦB - WAΦA - WBΦB -

¥(1 - ΦA - ΦB)} (1)

∂q
∂s

) 1
6
Na2∇2q - WA(r)q, if 0 e s e fA (2)

∂q
∂s

) 1
6
Na2∇2q - WB(r)q, if fA < s e 1 (3)

F (WA,WB, ¥;T,E)
nkBT

) -ln Q [WA,WB] -

ε0vp

kBT∫dr
2Ω

κ(r)|E(r)|2 + 1
Ω∫dr {øNΦAΦB - WAΦA -

WBΦB - ¥(1 - ΦA - ΦB)} (4)

κ(r) ) κAΦA(r) + κBΦB(r) (5)

E ≡ (kBT
ε0vp

)1/2

(6)
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The requirement that the free energy functional be
an extremum with respect to variation of WA, WB, and
¥ and of the volume fractions ΦA and ΦB at constant
temperature, or øN, and fixed electric field Ê leads to
the following set of SCF equations:

The values of WA, WB, ¥, ΦA, and ΦB which satisfy these
equations are denoted by lower case letters wA, wB, ê,
φA, and φB, respectively. The free energy within the SCF
approximation, Fscf, is obtained by substitution of these
values into the free energy of eq 4

or

In addition to these equations, there are also the
Maxwell equations which the electrostatic field must
satisfy in absence of free charges:

As usual, we guarantee that the first of these equations
is satisfied by introducing the electric potential V̂(r)

Since we will consider, in addition to the disordered
phase, spatially periodic ones, it is convenient to write
all functions of position in terms of their values aver-
aged over a unit cell

and their deviations from those average values

The average values of several quantities of interest are

where the value of ê0 has been arbitrarily set to zero,
and Ê0 is the value of the local electric field averaged
over a unit cell. To determine this without knowing the
full spatially dependent electric field E(r), we reason
as follows. Assume that the external field is produced
by planar electrodes which are separated by a distance
d and subject to a voltage difference V12. In the gap,
and along the z-axis perpendicular to the electrodes, the
field is Eext ) -V12/L. Given that the dielectric fills the
space between the plates and that the voltage V12 is held
fixed as the dielectric is inserted, it follows that ∫Ez dz
) EextL and that the average value of Ez is Eext. We
make a reasonable assumption that the free energy of
the system is minimized when an axis of symmetry of
one of the ordered structures coincides with the z-axis.
In this case E0 ) ∫0

LEz dz/L ) Eext. Hence, in rescaled
units

and

Utilizing these average values, we can rewrite the free
energy in the SCF approximation, eqs 12 and 13, in the
form

where, from the incompressibility condition, δφA(r) )
-δφB(r). Note that the electric field contribution -κ0Ê0

2/2
is common to all phases. For the lamellar and hexagonal
phases in the lowest energy orientation, this is the only
contribution to the free energy from the electric field.
It can conveniently be absorbed in a redefinition of the
free energy

The advantage of separating out the average values
is that the only remaining Maxwell equation, eq 15, can
be written as an inhomogeneous equation for the
potential δV̂(r)

This, and the three remaining self-consistent equations,

wA ) øNφB + ê - 1
2
κA| Ê|2 (7)

wB ) øNφA + ê - 1
2
κB| Ê|2 (8)

φA + φB ) 1 (9)

φA ) - Ω
Q

δQ
δwA

(10)

φB ) - Ω
Q

δQ
δwB

(11)

Fscf(T,E) ) F (wA,wB,ê;T,E) (12)

Fscf

nkBT
) -ln Q[wA,wB] -

1
Ω∫dr [øNφA(r) φB(r) + ê(r)] (13)

∇ × Ê ) 0 (14)

∇·D̂(r) ≡ ∇·(ε0κ(r) Ê(r)) ) 0 (15)

Ê(r) ) -∇V̂(r) ) -∇V(r)/E (16)

C0 ≡ 〈C〉 )
∫unit cellC(r) dr

∫unit cell dr
(17)

δC(r) ≡ C(r) - C0 (18)

φA,0 ) fA

φB,0 ) 1 - fA

κ0 ) κAfA + κB(1 - fA)

wA,0 ) øN(1 - fA) - 1
2
κA|Ê0|2

wB,0 ) øNfA - 1
2
κB|Ê0|2 (19)

Ê0 ) (ε0vp

kBT)1/2

Eext ẑ (20)

δÊ(r) ) Ê(r) - Ê0 ≡ -∇δV̂(r) (21)

Fscf

nkBT
) -ln{ Q [wA,wB]

Q [wA,0,wB,0]} + øNfA(1 - fA) -

1
2
κ0Ê0

2 - øN
Ω ∫δφA(r) δφB(r) dr (22)

fn(Ê0) ≡ Fscf/nkBT + 1
2
κ0Ê0

2 (23)

∇δV̂(r)·∇[κAδφA(r) + κBδφB(r)] + [κA(fA + δφA(r)) +

κB(1 - fA + δφB(r))]∇2δV̂(r) ) Ê0
∂

∂z
[κAδφA(r) +

κBδφB(r)] (24)

δwA(r) ) øNδφB(r) + δê(r) +
1
2
κA[2Ê0·∇δV̂(r) - (∇δV̂(r))2] (25)
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constitute the four self-consistent equations which
determine the four functions δwA(r), δwB(r), δê(r), and
δV̂(r).

We note that with our choice of constant external field
applied along the z direction the Maxwell equation, eq
24, admits the following symmetry:

where the components of r have been written as (r⊥, z).
The self-consistent equations, eqs 24-27, are now solved
by a standard procedure of expanding the functions of
position in a complete set of functions with the above
symmetries and those of any specific phase considered.13

We have utilized in our calculation sets of basis func-
tions containing between 70 and 125 functions, depend-
ing upon the value of øN.

The only parameters entering our calculation are øN,
fA, κA, and κB and the rescaled external field Eext/E.
Comparison of the results with experiment requires the
evaluation of E for given T and volume per chain vp. In
addition, the relation between T and øN must be
specified.

III. Results

As noted earlier, the free energies of lamellar or
hexagonal phases are minimized when the lamellae or
the cylinders are aligned parallel to the electric field
because in this orientation there is no buildup of
polarization charge. In the body-centered-cubic (bcc)
phase, however, there must be an accumulation of
polarization charge irrespective of the external field
direction. We must determine which field direction
produces a phase of distorted spheres with the lowest
free energy and how large a field this phase can sustain
before a transition to the hexagonal phase is encoun-
tered. It is these issues which we now address.

A. The R3hm to Hexagonal Phase Transition. The
symmetry group of the bcc phase is Im3hm, which has
three two-dimensional space subgroups: p4mm along
the [100] direction, p6mm along the [111] direction, and
p2mm along the [110] direction. If the field were applied
along either the [110] or [100] directions, the symmetry
would be reduced to I4/mmm, while if it were applied
along the [111] direction, the symmetry would be
reduced to R3hm. The symmetry in the latter case is of
a bcc arrangement of spheres that has been distorted
along the [111] direction. As the R3hm group has the
p6mm symmetry of the hexagonal phase, one would
suspect that a field applied along the diagonal [111]
direction will result in the lowest free energy. By direct
calculation of these configurations, we find that the R3hm
phase does indeed have a lower free energy than that
of the I4/mmm.

That the electric field favors one orientation of the
Im3hm over another is an effect which is not captured

by an expansion of the free energy to quadratic order
in the external field.11 Nonetheless, it is instructive to
consider the result of such an expansion. It is obtained
by solving the Maxwell equation ∇‚[ε0κ(φA,φB)E] ) 0 to
second order in E to obtain E(φA,φB) and evaluating this
field from the volume fractions characterizing the
system in the absence of an external field. The distortion
of the density distribution produced by this field itself
contributes terms to the free energy which are higher
order in E2. For a phase which is cubic in the absence
of an electric field, the perturbation result can be
written as12

where δφA ) -δφB is the variation of the local volume
fraction in the zero-field structure and κeff is, by defini-
tion, the effective dielectric constant for the structure
in the field.

We now compare the full SCF solution with this
perturbation result. We choose øN ) 15 and fA ) 0.29,
values at which the bcc phase is the most stable in zero
electric field. The dielectric constants are chosen to
make contact with recent experimental systems of poly-
(methyl methacrylate) (PMMA)/polystyrene (PS) diblock
copolymer, which is referred to hereafter as the PMMA-
PS system. At experimental temperatures around 160
°C the dielectric constants appropriate to the PMMA-
PS copolymer with PMMA being the A block and PS
the B block are κA ) 6.0 (for PMMA) and κB ) 2.5 (for
PS),5,9,10 which yield an average of κ0 = 3.52. In Figure
1, we show the difference, ∆fn, between the free energy
fn(Ê0) ≡ Fscf/nkBT + κ0Ê0

2/2, eq 23, and its value in zero
external field in the bcc phase. It is shown as a function
of Ê0, for the hexagonal phase and for the R3hm phase,
as calculated from the full SCF theory and from

Figure 1. The difference, ∆fn, between the dimensionless free
energy, fn, defined in eq 23 and its value in zero external field
in the bcc phase. It is calculated from the SCF theory and is
plotted vs dimensionless external electric field, Ê0 ) E0/E, for
the hexagonal phase (horizontal dotted line) and the R3hm
phase (solid line). The system is characterized by a øN ) 15,
fA ) 0.29. The dielectric constants are κA ) 6.0 (for the PMMA
block) and κB ) 2.5 (for the PS block), yielding κ0 = 3.52. The
perturbation theory result for the R3hm phase is shown as a
dashed and dotted line. It has a higher free energy.

Fpt(Ê0)
nkBT

) - 1
2
κ0Ê0

2[1 - 1
12Ω(κA - κB

κ0
)2∫dr [δφA(r) -

δφB(r)]2]
≡ - 1

2
κeffÊ0

2 (29)

δwB(r) ) øNδφA(r) + δê(r) +
1
2
κB[2Ê0·∇δV̂(r) - (∇δV̂(r))2] (26)

δφA(r) + δφB(r) ) 0 (27)

δV̂(r⊥,z) ) δV̂(-r⊥,z) ) -δV̂(r⊥,-z)

κ(r⊥,z) ) κAφA(r⊥,z) + κBφB(r⊥,z)

) κ(-r⊥,z) ) κ(r⊥,-z) (28)
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perturbation theory. The latter is seen to be adequate
for fields smaller than 10-20% of the natural unit E at
which Ê0 ) 1. The figure also shows that there is a
transition from the R3hm to the hexagonal phase at a
value of Ê0 = 0.477 as determined from the full self-
consistent calculation. Perturbation theory underesti-
mates the magnitude of the field needed to bring about
this transition. That the transition is first-order is easily
seen as follows. The average electric and displacement
fields, E0 and D0, are evaluated by taking their spatial
averages over the unit cell. In our case the only nonzero
average components are those in the z-direction, and
they are related to the free energy per unit volume
according to

or

One sees from Figure 1 that at the phase transition the
free energies of the R3hm and hexagonal phases intersect
with different slopes; therefore, the displacement field
changes abruptly.

As a result of the application of the electric field along
the [111] direction, the spheres of minority component
are elongated in this direction. A density profile of the
system in the R3hm phase at an external field Ê0 ) 0.470,
slightly smaller than that at the transition to the
hexagonal phase, Ê0 ) 0.477, is shown in Figure 2b. At
the transition, the profile changes abruptly to that of
the hexagonal phase, which is also shown in Figure 2c
for Ê0 ) 0.480. To see the extent of the distortion in the
R3hm phase, which can be characterized by the aspect
ratio of the distorted spheres, 1.248, we also present the
density profile of the bcc phase in zero external field,
in Figure 2a. The cuts are in the plane containing the
[111] and [1h10] directions.

There are two features of interest that can be seen
particularly clearly from the approximate expression of
eq 29. The first is that in the R3hm phase the effective
average dielectric constant, κeff, is smaller than κ0. In
the hexagonal and disordered phases, however, κeff is
precisely κ0. Therefore, the displacement field D0 in the
R3hm phase is smaller than in the other two phases. This
is in accord with the change of slope of the free energy
with electric field shown in Figure 1 and eqs 30 and 31.

The second concerns the fact that the dielectric
constants are temperature-dependent. Therefore, the
value of the electric field needed to bring about a phase
transition will also vary with temperature. The pertur-
bation expression leads one to expect that, for fields
smaller than or comparable to E, the natural E-field
scale, the field at the transition will vary as

B. The Generalized Claussius-Clapeyron Equa-
tion. Before presenting the phase diagram of our A/B
block copolymer system in an E-field, we will make use
of some general thermodynamic considerations. In

particular, from the differential of the free energy per
unit volume

where s ) S/Ω is the entropy per unit volume, one
immediately derives a Claussius-Clapeyron equation
for the slope of the coexistence line between any two
phases

where ∆s and ∆D0 are the differences in entropies and
displacement fields, respectively, in the coexisting phases.

∂F/Ω
∂E0

) - D0 (30)

∂F/nkBT
∂Ê0

) -D̂0 (31)

Etr(T) ∝
[κ0(T)]1/2

κA(T) - κB(T)
)

[fAκA(T) + (1 - fA)κB(T)]1/2

κA(T) - κB(T)
(32)

Figure 2. Density profiles for three different phases of a
system characterized by øN ) 15 and f ) 0.29, with other
parameters as in Figure 1: (a) the bcc phase which occurs in
zero external field; (b) the R3hm phase at an external electric
field Ê0 ) 0.470 just below the phase transition to the
hexagonal phase which occurs at Ê0 ) 0.477; (c) the hexagonal
phase, which is shown for Ê0 ) 0.480. The cuts are in the plane
containing the [111] and [1h10] directions. In the black regions,
the local volume fractions of component A is greater than 0.55,
in the intermediate regions, it is between 0.55 and 0.45, and
in the white regions, it is less than 0.45.

d(F/Ω) ) -s dT - D0 dE0 (33)

dE0

dT
) - ∆s

∆D0
(34)
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This can be expressed in terms of Ê0, D̂0, and øN ) b/T as

C. Phase Diagrams. We now turn to the phase
diagram as a function of the inverse temperature, øN,
the A-monomer fraction, fA, and the applied external
field, Ê0 ) E0/E. We concentrate on the portion of the
phase diagram involving the phase with R3hm symmetry
and the neighboring disordered and hexagonal phases.
In the space of inverse temperature øN, the fraction fA,
and applied field, the R3hm phase occupies a volume
which is bounded by two sheets of first-order transi-
tions: one from the R3hm to the hexagonal phase and
the other from the R3hm to the disordered phase. These
two sheets of first-order transitions meet at a line of
triple points, [Ê0,triple(fA), øNtriple(fA)]. Beyond this line,
the R3hm phase no longer exists, while the disordered
and hexagonal phases remain. They are separated by
another sheet of first-order transitions which emerges
from the line of triple points. Hence, this line is the locus
at which all three sheets of first-order transitions meet.

In Figure 3 we show a cut through the phase diagram
at fixed A-monomer fraction, fA ) 0.29. The cut shows
the phase diagram as a function of the dimensionless
electric field Ê0 and øN. At zero external field, the
entropy difference between the bcc phase and the
hexagonal phase is nonzero, but the difference in
displacement field obviously vanishes. From the Claus-
sius-Clapeyron equation, eq 35, the slope of the phase
boundary between these two phases must be infinite at
zero E-field. The same is true for the slope of the phase
boundary between the bcc phase and the disordered
phase at vanishing E-fields. Furthermore, we know from
the zero electric field results that the entropy of the
disordered phase is greater than that of the bcc phase
which, in turn, is greater than that of the hexagonal
phase. We also know that the displacement field in the
disordered and in the hexagonal phases is equal to
κ0ε0E0. As we noted earlier, the displacement field in
the R3hm phase is less than this value. This information,
together with the Claussius-Clapeyron, eq 35, implies
that the phase boundary between R3hm and the disor-
dered phase has a positive slope, while that between
R3hm and the hexagonal phase is negative in accord with
Figure 3.

Moreover, because of the presence of the positive
second term in eq 35, the positive slope of the phase
boundary between disordered and R3hm phases will be
greater in magnitude, or steeper, than that between the
R3hm and hexagonal phases. This is borne out by Figure
3. The three phases meet at the triple point, above
which the phase boundary is vertical as there is no
difference between the displacement fields of the coex-
isting disordered and hexagonal phases. The value of
the electric field at the triple point is Ê0,triple = 0.71.

To make contact with experiment, we take param-
eters to fit the PMMA-PS system of ref 4. With fA )
0.29 and a molecular mass of 3.9 × 104 g/mol, and
utilizing the known values of monomeric volumes, we
obtain a chain length of N = 379 and a volume per
PMMA-PS chain of vp ) 61.24 nm3. At T ) 430 K this
yields E ≡ (kBT/ε0vp)1/2 ) 104.6 V/µm. Therefore, the
value of the electric field at the triple point is in physical
units E0,triple ≈ 74.5 V/µm at this value of fA and T. One
sees from the figure that a transition from R3hm to
hexagonal phases could be brought about at electric
fields within the interval from this maximum value
down to zero, depending upon the values of øN and fA.

The evolution of the phase diagram of Figure 3 with
A-monomer fraction, fA, is easily understood. As fA
decreases from 0.29, the phase boundary at zero field
between R3hm and hexagonal phases moves toward
greater values of øN as does the boundary between
disordered and R3hm phases. When fA is smaller than
f A

coex ) 0.114, the value at which the bcc and hexagonal
phases coexist at infinite øN,16 the boundary between
hexagonal and R3hm phases will asymptote with zero
slope to an fA-dependent finite value as øN increases
without limit. This zero slope also follows from the
Claussius-Clapeyron eq 35 due to the fact that the ratio
∆s/∆D̂0 is finite and 1/øN f 0.

An example of such a phase diagram is shown in
Figure 4. This figure corresponds to a system with fA )
0.1 < f A

coex ) 0.114, as was investigated recently in ref
9. In contrast with Figure 3, one sees here that the
interval over which a transition can be observed from
R3hm to hexagonal phases now extends from the triple
point at Ê0 ) 2.56 down to a nonzero minimum value
of Ê0 ) 1.33. That is, for electric fields less than this
minimum value, no transition from the R3hm to a
hexagonal phase occurs within our model. For PMMA-
PS with fA ) 0.1 and molecular mass of 1.51 × 105 g/mol,

Figure 3. Calculated phase diagram of a diblock copolymer
with a volume fraction of fA ) 0.29 in the presence of an
external electric field. The phase diagram is shown as a
function of the dimensionless field Ê0 and the interaction
parameter øN. The triple point is located at Ê0,triple ) 0.71 and
øNtriple ) 14.58. Other parameters as in Figure 1.

dÊ0

d(øN)
)

vp

øN
∆(s/kB)

∆D̂0
+

Ê0

2øN
(35)

Figure 4. Calculated phase diagram of a diblock copolymer
in the presence of an external electric field. Similar to Figure
3 but with fraction of the A block, fA ) 0.1. The phase diagram
is shown as a function of the dimensionless field Ê0 and the
interaction parameter øN. The triple point is located at Ê0,triple
) 2.56 and øNtriple ) 50.74.
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as in ref 9, we obtain N ≈ 1458 and a volume per chain
vp ) 239.7 nm3. Therefore, at the experimental temper-
ature of T ) 430 K, the unit of electric field E ) 52.9
V/µm. In physical units, then, the triple point occurs at
an external field of about 135 V/µm, and the minimum
electric field needed to produce a transition can be
estimated to be 79 V/µm.

In Figure 5 we show a different cut through the phase
diagram in the (Ê0, fA) plane and for a fixed øN ) 13.3.
The location of the triple point is Ê0,triple ) 0.58 and
fA,triple ) 0.320. This figure, and that of Figures 3 and
4, show that the value of the electric field needed to
bring about a transition from the R3hm phase is, for a
given fA fraction, a sensitive function of temperature
and, for a given temperature, a sensitive function of the
mole fraction of A block, fA.

Figure 6 shows two cuts through the phase diagram
at constant electric field, Ê0 ) 0, and Ê0 ) 0.2. The solid
line at lower øN shows the phase boundary at zero-field
between disordered and bcc phases while the solid line
at larger øN shows the zero-field phase boundary
between the bcc and hexagonal phases. The dashed lines
between them show the phase boundaries for Ê0 ) 0.2.
The line denoted B is the boundary between the
disordered and the R3hm phase of distorted spheres; A
is the boundary between R3hm and hexagonal phases.
These boundaries meet at the triple point, tr, which

occurs at øNtriple ≈ 11.43 and fA,triple ≈ 0.39. For larger
values of fA, there is a line, C, of transitions directly
from the disordered to the hexagonal phase. As the
external field increases still further, the triple point
recedes to larger values of øN, leaving behind only the
line of direct transitions between disordered and hex-
agonal phases. Note that, except for the location of its
terminus at the triple point, this boundary is indepen-
dent of the applied field as it contributes to the free
energy of both of these phases equally. The dielectric
constants used to generate this figure are the same as
those used in previous figures.

For completeness, we have also examined the case in
which the dielectric constants of the minority and
majority components are interchanged as compared
with Figure 3. Namely, the majority component with fA
) 0.71 has the larger dielectric constant of κA ) 6.0 and
the minority the smaller value of κB ) 2.5. We find that
the R3hm phase is now somewhat more stable with
respect to the hexagonal phase, so that the value of the
external electric field needed to bring about a transition
from the former to the latter phase is increased. We note
that this interchange increases the average value of the
dielectric constant, so that all phases have a lower free
energy due to the factor of -κ0Ê0

2/2 which it contains.
However, it is not a priori obvious that the R3hm phase
would have its free energy lowered by more than that
of the hexagonal phase by this interchange. In addition,
we have determined that the spheres of minority
component and lower dielectric constant distort in the
[111] direction just as in the case when the minority
component has the larger dielectric constant. The above
effects are not captured by the perturbation result of
eq 29 which is invariant under the interchange of κA
and κB.

IV. Concluding Remarks

In sum, we have calculated the phase diagram of a
block copolymer system in an external electric field
which couples to the diblocks through the difference in
their dielectric constants. We have employed a fully self-
consistent-field approach in which the relevant Maxwell
equation is treated on an equal footing with the other
self-consistent equations. We have determined that the
body-centered-cubic phase will preferentially align along
the [111] direction, causing its symmetry to be reduced
to R3hm. The electric field can induce phase transitions
between this phase and either the disordered or the
hexagonal phase. The strength of the field needed to
induce such transitions is a sensitive function of the
parameters of the system, such as its temperature and
its chain architecture, which in the case of linear
diblocks is quantified simply by the mole fraction, fA.

For parameters that fit the experimental PMMA-PS
diblock copolymer system investigated recently,9 fA )
0.1, vp ) 239.7 nm3, and T ) 430 K, we find that an
electric field of at least 70-80 V/µm would be needed
to observe a transition to the hexagonal phase. This
contrasts with the reported existence of such a phase
transition under an applied field of only 40 V/µm. There
are several possible explanations of the difference
between the experimental results and the theoretical
ones presented here.

Our model employs a linear constitutive relation
between dielectric constant and volume fractions and
characterizes the PMMA-PS system by a few general
parameters, the PMMA mole fraction fA and the inter-

Figure 5. Calculated phase diagram for a diblock copolymer
as a function of dimensionless external field and the A mole
fraction parameter, fA. Other parameters are øN ) 13.3, κA )
6.0, and κB ) 2.5. The triple point occurs at Ê0,triple ) 0.58 and
fA,triple ) 0.32.

Figure 6. Calculated phase diagram at constant electric field,
Ê0. The outer two solid lines are the E0 ) 0 disorder-to-bcc
and bcc-to-hexagonal phase boundaries. Between them we
show three other transition lines for Ê0 ) 0.2. They are the
R3hm-to-hexagonal (A), R3hm-to-disorder (B), and disorder-to-
hexagonal transition (C). These three lines meet at tr, the
triple point: fA,triple ) 0.390 and øNtriple ) 11.43.
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action parameter øN. It further assumes equal volumes
for both monomers and equal Kuhn lengths for them.
One knows that deviations from the last assumption
certainly shift the locations of the phase boundaries.17

It is plausible that at rather asymmetric volume frac-
tions of fA ) 0.1 the model provides only semiquantita-
tive agreement with the experimental PMMA-PS phase
diagram. Any difference in the theoretical and experi-
mental phase diagrams at zero electric field will, in the
presence of a nonzero one, manifest itself in a difference
in relative stability of the various phases. Given the
sensitive dependence on the phase boundaries of the
minimum external field needed to bring about a phase
transition, differences between the general theory and
the experimental result are to be expected. At present,
the phase diagram of the PMMA-PS system of ref 9 is
not yet known. When additional experimental informa-
tion becomes available, one will also need to determine
the relationship between the temperature and the øN
interaction parameter in order to convert the phase
diagram calculated here to practical units so that it can
be compared directly to the experimental one.

Last, we have employed a simple coupling between
the system and the external field via the difference in
dielectric constants of the copolymer blocks. Other
couplings are possible.18,19 Just such an additional
coupling, to mobile ions, has been suggested by Tsori
et al.10 and is discussed also in ref 9. A minute fraction
of mobile ions embedded in the minority PMMA fraction
and not in the majority PS can lead to an enhanced
response of the PMMA-PS system to external electric
fields with moderate magnitude. It could also change
the phase diagram quantitatively, resulting in a sub-
stantial lowering of the triple-point value of the electric
field. Additional experiments, particularly on copoly-
mers with the same PMMA-PS blocks, but at different
temperatures or values of the architectural parameter
fA, would be most useful to shed additional light on the
comparison of theory and experiment. In particular, a
comparison of the two PMMA-PS systems of refs 4 and
9 would be enlightening because, as Figures 3 and 4
show, they are predicted here to exhibit significantly
different phase behavior in an external electric field.
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